Skip to main content
Log in

Cytochromes inAzospirillum brasilense

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Difference spectra of the crude cell-free extract ofAzospirillum brasilense sp. 7 indicate the presence of cytochrome b, cytochrome c, and one CO-binding pigment that exhibits the spectral characteristics of cytochrome o. All the pigments are present in varying concentrations at all stages of growth. With progress of the bacterial growth, there is a linear increase in the level of cytochrome b with a disproportionate increase in the level of cytochrome c. At the stationary phase, the amount of cytochrome b and c is increased by about sevenfold compared with that in the early log phase. The increase in the concentration of total cytochrome is not accompanied by an increase in the respiration rate of the cells. Both cytochrome b and cytochrome c are located in the particulate fraction of the cells and are not fully reducible by succinate alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Döbereiner, J., Day, J. M. 1975. Associative symbiosis in tropical grasses: characterization of microorganisms and dinitrogen fixing sites. International symposium on N2 fixation: interdisciplinary discussions 3–7 June, 1974, Washington State University. Washington State University Press, Pullman, WA.

    Google Scholar 

  2. Okon, Y. Houchins, J. P., Albrecht, S. L., Burris, R. H. 1977. Growth ofSpirillum lipoferum at constant partial pressures of oxygen, and the properties of its nitrogenase in cell-free extracts. Journal of General Microbiology98:87–93

    PubMed  Google Scholar 

  3. Kamen, M. D., Horio, I. 1970. Bacterial cytochromes. I. Structural aspects. Annual Review of Biochemistry39:673–700.

    PubMed  Google Scholar 

  4. Williams, J. N. 1964. A method for the simultaneous quantitative estimation of cytochromes a, b, c1 and c in mitochondria. Archives of Biochemistry and Biophysics107:537–543.

    PubMed  Google Scholar 

  5. Appleby, C. A. 1969. Electron transport systems ofRhizobium japonicum. II. Rhizobium haemoglobin, cytochromes and oxidases in free-living (cultured) cells. Biochimica et Biophysica Acta172:88–105.

    PubMed  Google Scholar 

  6. Jones, C. W., Redfearn, E. R. 1966. Electron transport inAzotobacter vinelandii. Biochimica et Biophysica Acta113:467–481.

    PubMed  Google Scholar 

  7. Wolfe, R. S., Pfenning, N. 1977. Reduction of sulfur bySpirillum 5175 and syntrophism withChlorobium. Applied and Environmental Microbiology33:427–433.

    PubMed  Google Scholar 

  8. Clark-Walker, G. D., Rittenberg, B., Laschlles, J. 1967. Cytochrome synthesis and its regulation inSpirillum itersonii. Journal of Bacteriology94:1648–1655.

    PubMed  Google Scholar 

  9. Cole, J. A., Rittenberg, S. C. 1971. A comparison of respiratory processes inSpirillum volutans, Spirillum itersonii andSpirillum serpens. Journal of General Microbiology69:375–383.

    PubMed  Google Scholar 

  10. Romanov, V. I., Matus, V. K., Korolev, A. V., Kretovich, V. L. 1973. Influence of oxygen conditions on the respiration and cytochrome composition inRhizobium leguminosarum. Mikrobiologiya42:976–982.

    Google Scholar 

  11. Faller, A. H., Schleifer, K. 1981. Effects of growth phase and oxygen supply on the cytochrome composition and morphology ofArthrobacter crystallopoietes. Current Microbiology6:253–258.

    Google Scholar 

  12. Lowry, O. H., Rosebrough, N. J. Farr, A. L., Randall, R. J. 1951. Protein measurement with the folin phenol reagent. Journal of Biological Chemistry193:265–275.

    PubMed  Google Scholar 

  13. Smith, L. 1978. Bacterial cytochromes and their spectral characterization. Methods in Enzymology53D:202–212.

    PubMed  Google Scholar 

  14. Herbert, D., Phipps, P. J. Strange, R. E. 1971. Chemical analysis of microbial cells. Methods in Microbiology5B:249–252.

    Google Scholar 

  15. Poole, R. K. 1983. Bacterial cytochrome oxidases: a structurally and functionally diverse group of electron-transfer proteins. Biochimica et Biophysica Acta726:205–243.

    PubMed  Google Scholar 

  16. Omura, T., Sato, R. 1964. The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature. Journal of Biological Chemistry239:2370–2378.

    PubMed  Google Scholar 

  17. Castor, L. N., Chance, B. 1959. Photochemical determinations of the oxidases of bacteria. Journal of Biological Chemistry234: 1587–1592.

    PubMed  Google Scholar 

  18. Iaber, H. W., Morrison, M. 1964. Electron transport inStaphylococci: properties of a particle preparation from exponential phaseStaphylococcus aureus. Archives of Biochemistry and Biophysics105:367–379.

    PubMed  Google Scholar 

  19. Ianiguchi, S., Kamen, M. D. 1965. The oxidase system of heterotrophically grownRhodospirillum rubrum. Biochemica et Biophysica Acta96:395–428.

    Google Scholar 

  20. Jacobs, N. J., Conti, S. F. 1965. Effect of hemin on the formation of anaerobically grownStaphylococcus epidermidis. Journal of Bacteriology89:675–679.

    PubMed  Google Scholar 

  21. White, D. C. 1967. Effect of glucose on the formation of the membrane-bound electron transport system inHaemophilus parainfluenzae. Journal of Bacteriology93:567–573.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakrabarti, S.K., Mishra, A.K. & Chakrabartty, P.K. Cytochromes inAzospirillum brasilense . Current Microbiology 11, 343–347 (1984). https://doi.org/10.1007/BF01567703

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01567703

Keywords

Navigation