Skip to main content
Log in

Nitrite and nitrate synthesis from pyruvic-oxime by anAlcaligenes sp.

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

AnAlcaligenes sp. isolated from soil was characterized as to its ability to oxidize and grow on pyruvic-oxime. Abundant nitrification of pyruvic-oxime was demonstrated with maximal nitrite and nitrate production of 1867 mg NO2 -N per liter and 42 mg NO3 -N per liter. TheAlcaligenes sp. oxidized hydroxylamine and this metabolism was stimulated when either acetate or pyruvate was present. This organism was also capable of limited pyruvic-oxime oxidation when cultured in an acidic medium. The metabolism of pyruvic-oxime and nitrification by theAlcaligenes sp. in the environment are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Alexander, M., Marshall, K. C., Hirsch, P. 1960. Autotrophy and heterotrophy in nitrification, pp. 586–591. Transactions of the International Congress of Soil Science, 7th. Madison, Wisc.

  2. Amarger, N., Alexander, M. 1968. Nitrite formation from hydroxylamine and oximes byPseudomonas aeruginosa. Journal of Bacteriology95:1651–1657.

    Google Scholar 

  3. Becker, G. E., Schmidt, E. L. 1964. B-nitropropionic acid and nitrite in relation to nitrate formation byAspergillus flavus. Archiv für Mikrobiologie49:167–175.

    Google Scholar 

  4. Berger, P. S., Rho, J., Gunner, H. B. 1979. Bacterial supression ofChlorella by hydroxylamine production. Water Research13:267–273.

    Google Scholar 

  5. Castignetti, D., Gunner, H. B. 1980. Sequential nitrification by anAlcaligenes sp. andNitrobacter agilis. Canadian Journal of Microbiology26:1114–1119.

    Google Scholar 

  6. Doxtader, K. G., Alexander, M. 1966. Nitrification of growing and replacement cultures ofAspergillus. Canadian Journal of Microbiology12:807–815.

    Google Scholar 

  7. Doxtader, K. G., Alexander, M. 1966. Nitrification by heterotrophic soil microorganisms. Soil Science Society of America Proceedings30:351–355.

    Google Scholar 

  8. Eylar, O. R., Schmidt, J., Schmidt, E. L. 1959. A survey of heterotrophic microorganisms from soil for ability to form nitrite and nitrate. Journal of General Microbiology20:473–481.

    Google Scholar 

  9. Focht, D. D., Verstraete, W. 1977. Biochemical ecology of nitrification and denitrification. Advances in Microbial Ecology1:135–214.

    Google Scholar 

  10. Gomori, G. 1955. Preparation of buffers for use in enzyme studies, pp. 138–146. In: Colowick, S. P., Kaplan, N. O. (eds.), Methods in enzymology, vol. 1. New York: Academic Press.

    Google Scholar 

  11. Grossowicz, N., Lichtenstein, Y. 1961. Enzymic binding of hydroxylamine by fumaric acid. Nature191:412–413.

    Google Scholar 

  12. Gunner, H. B. 1963. Nitrification byArthrobacter globiformis. Nature197:1127–1128.

    Google Scholar 

  13. Hilali, A., Molina, J. A. 1979. Nitrate and nitrite reduction by microorganisms embedded in a filter paper incubated aerobically. Applied and Environmental Microbiology38:1140–1143.

    Google Scholar 

  14. Jensen, H. L. 1951. Nitrification of oxime compounds by heterotrophic bacteria. Journal of General Microbiology5:360–368.

    Google Scholar 

  15. Lees, H., Simpson, J. R., Jensen, H. L., Sorensen, H. 1954. Formation of nitrite from oximes and hydroxylamine by microorganisms. Nature173:358.

    Google Scholar 

  16. Obaton, M., Amarger, N., Alexander, M. 1968. Heterotrophic nitrification byPseudomonas aeruginosa. Archiv für Mikrobiologie63:122–132.

    Google Scholar 

  17. Quastel, J. H., Scholefield, P. G. 1949. Influence of organic nitrogen compounds on nitrification in soil. Nature164:1068–1072.

    Google Scholar 

  18. Quastel, J. H., Scholefield, P. G., Stevenson, J. W. 1950. Oxidation of pyruvic-oxime by soil organisms. Nature166:940–942.

    Google Scholar 

  19. Remacle, J. 1977. The role of heterotrophic nitrification in acid forest soils—preliminary results. Ecology Bulletin (Stockholm)25:560–561.

    Google Scholar 

  20. Rice, E. L., Pancholy, S. K. 1972. Inhibition of nitrification by climax ecosystems. American Journal of Botany59:1033–1040.

    Google Scholar 

  21. Rice, E. L., Pancholy, S. K. 1973. Inhibition of nitrification by climax ecosystems. II. Additional evidence and possible role of tannins. American Journal of Botany60:691–702.

    Google Scholar 

  22. Rice, E. L., Pancholy, S. K. 1974. Inhibition of nitrification by climax ecosystems. III. Inhibitors other than tannins. American Journal of Botany61:1095–1103.

    Google Scholar 

  23. Romanovskaya, V. A., Shurova, Z. P., Yurchenoko, V. V., Tkachuk, L. V., Malashenko, Y. R. 1977. Investigation of the ability of obligate methylotrophs for nitrification. Translated from Mikrobiologiya46:66–70.

    Google Scholar 

  24. Saris, N. E., Virtanen, A. I. 1957. On hydroxylamine compounds inAzotobacter cultures. I. Formation of hydroxylamine compounds. Acta Chemica ScandinavicaII:438–1440.

    Google Scholar 

  25. Schmidt, E. L., Molina, J. A., Chiang, C. 1973. Isolation of chemoautotrophic nitrifiers from Moroccan soils. Bulletin of Ecological Research Communications (Stockholm)17:166–167.

    Google Scholar 

  26. Verstraete, W. 1975. Heterotrophic nitrification in soils and aqueous media. Translated from Izvestiya Akademii Nauk S.S.S.R. (Ser. Biolog.)4:541–558.

    Google Scholar 

  27. Verstraete, W., Alexander, M. 1972. Heterotrophic nitrification byArthrobacter sp. Journal of Bacteriology110:955–961.

    Google Scholar 

  28. Verstraete, W., Alexander, M. 1972. Heterotrophic nitrification in samples from natural environments. Naturwissenschaften59:79–80.

    Google Scholar 

  29. Verstraete, W., Alexander, M. 1972. Mechanisms of nitrification byArthrobacter sp. Journal of Bacteriology.110:962–967.

    Google Scholar 

  30. Verstraete, W., Alexander, M. 1973. Heterotrophic nitrification in samples of natural ecosystems. Environment Science and Technology.7:39–42.

    Google Scholar 

  31. Virtanen, A. L., Hakala, M., Jarvinen, H. 1949. Formation of oxime-nitrogen in anaerobic nitrogen fixation. Acta Chemica Fenn. B22:23–29.

    Google Scholar 

  32. Virtanen, A. L., Laine, T. 1939. Investigations on the root nodule bacteria of leguminous plants. Biochemical Journal33:412–416.

    Google Scholar 

  33. Wiley, P. F., Herr, R. R., Mackeller, F. A., Argoudelis, A. D. 1965. Three chemically related metabolites ofStreptomyces. II. Structural studies. Journal of Organic Chemistry30:2330–2334.

    Google Scholar 

  34. Yamafuji, K., Akita, T. 1952. On transoximation. Enzymology15:313–317.

    Google Scholar 

  35. Yamafuji, K., Konda, H., Omura, H. 1950. Distribution of oxime in plant and animal tissues. Enzymology14:153–156.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castignetti, D., Gunner, H.B. Nitrite and nitrate synthesis from pyruvic-oxime by anAlcaligenes sp.. Current Microbiology 5, 379–384 (1981). https://doi.org/10.1007/BF01566754

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01566754

Keywords

Navigation