Skip to main content
Log in

Reducibility of cytochromeb in mitochondrial inner membrane

  • Published:
Journal of bioenergetics Aims and scope Submit manuscript

Abstract

When mitochondrial inner membrane was disintegrated into Complex I-III, IV, and oligomycin-sensitive ATPase, about 50% of cytochromeb in Complex I-III was readily reduced with NADH, as judged by the appearance of a peak at 562 nm, while in whole mitochondria less than 25% of cytochromeb was reduced by succinate. On addition of antimycin to the substrate-reduced Complex I-III, cytochromeb was further reduced to 71% of the total, and the peak at 562 nm was red-shifted to 564 nm as in the case of dithionite reduction. These results indicate that the 562 nm and 564 nm peaks, at 29°C correspond, respectively, tob 560 andb 562.5 at 77°K of Davis et al. [7] and to “b K” and “b T” of Chance et al. [2]. When Complex I-III and oligomycin-sensitive ATPase were reconstituted to form a membrane, about 60% of cytochromeb in Complex I-III was readily reduced with NADH. In this case the 562 nm peak was not red-shifted. However, the difference spectrum of NADH-reduced membraneminus that in the presence of deoxycholate showed a peak at 565 nm. A mirror image of the difference spectrum was obtained on addition of an uncoupler,m-chlorocarbonyl cyanide phenylhydrazone. This is characteristic for “b T”. These results support the idea that the occurrence of spectral peaks of “b T” and “b K” is not due to two species but to single species

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

OS-ATPase:

oligomycin sensitive ATPase

CCCP:

m-chlorocarbonyl cyanide phenylhydrazone

F1 :

coupling factor one

OSCP:

oligomycinsensitivity-conferring protein

References

  1. B. Chance and B. Schoener,J. Biol. Chem.,241 (1966) 4567.

    PubMed  Google Scholar 

  2. B. Chance, D.E. Wilson, P.L. Dutton and M. Erecinska,Proc. Natl. Acad. Sci. U.S.A.,66 (1970) 1175.

    PubMed  Google Scholar 

  3. D.F. Wilson and P.L. Dutton,Biochem. Biophys. Res. Commun.,39, (1970) 59.

    PubMed  Google Scholar 

  4. B. Chance and B. Schoener,J. Biol. Chem.,241 (1966) 4577.

    PubMed  Google Scholar 

  5. K.A. Davis and Y. Hatefi,Biochem. Biophys. Res. Commun. 44 (1971) 1338.

    PubMed  Google Scholar 

  6. K.A. Davis, Y. Hatefi, K.L. Poff and W.L. Butler,Biochem. Biophys. Res. Commun.,46 (1972) 1984.

    PubMed  Google Scholar 

  7. K.A. Davis, Y. Hatefi, K.L. Poff and W.L. Butler,Biochim. Biophys. Acta,325 (1973) 341.

    PubMed  Google Scholar 

  8. A. Azzi and M. Santoto,Biochem. Biophys. Res. Commun.,45 (1971) 945.

    PubMed  Google Scholar 

  9. A.H. Caswell,Arch. Biochem. Biophys.,144 (1971) 445.

    PubMed  Google Scholar 

  10. D. Devault,Biochim. Biophys. Acta,226 (1971) 193.

    PubMed  Google Scholar 

  11. M.K.F. Wikström and J.A. Berden, in:Mechanisms in Bioenergetics, eds G.F. Azzone, L. Ernster, S. Papa, E. Quagliariello and N. Siliprandi, Academic Press, New York (1973) p. 545.

    Google Scholar 

  12. P.L. Dutton, M. Erecinska, N. Sato, Y. Mukai, M. Pring and D.F. Wilson,Biochim. Biophys. Acta,267 (1972) 15.

    PubMed  Google Scholar 

  13. P.L. Dutton and B.T. Storey,Plant Physiol.,47 (1971) 282.

    Google Scholar 

  14. A.M. Lambowitz, W.D. Bonner and M.K.F. Wikström.,Proc. Natl. Acad. Sci. U.S.A. 71, (1974) 1183.

    PubMed  Google Scholar 

  15. M.K.F. Wikström,Biochim. Biophys. Acta,253 (1971) 332.

    PubMed  Google Scholar 

  16. M.K.F. Wikström,Biochim. Biophys. Acta 301 (1973) 155.

    PubMed  Google Scholar 

  17. T. Ozawa,Arch. Biochem. Biophys,117 (1966) 201.

    PubMed  Google Scholar 

  18. Y. Hatefi, A.G. Haavik and P. Jurtshuk,Biochim. Biophys. Acta,52 (1961) 106.

    PubMed  Google Scholar 

  19. A. Tzagoloff, K.H. Byington and D.H. MacLennan,J. Biol. Chem.,243 (1968) 2405.

    PubMed  Google Scholar 

  20. K. Kopaczyk, J. Asai and D.E. Green,Arch. Biochem. Biophys.,126 (1968) 358.

    PubMed  Google Scholar 

  21. G. Brenner and R.W. Horne,Biochim. Biophys. Acta,34 (1959) 103.

    PubMed  Google Scholar 

  22. Y. Hatefi, P. Jurtshuk and A.G. Haavik,Biochim. Biophys. Acta,52 (1961) 119.

    PubMed  Google Scholar 

  23. R.W. Estabrook,J. Biol. Chem.,227 (1957) 1093.

    PubMed  Google Scholar 

  24. T. Ozawa,J. Biochem.,67 (1970) 157.

    PubMed  Google Scholar 

  25. T. Ozawa and J. Asai,J. Bioenergetics,4 (1973) 507.

    Google Scholar 

  26. H. Roy and E.N. Moudrianakis,Proc. Natl. Acad. Sci. U.S.A.,68 (1971) 466, 2720.

    Google Scholar 

  27. G. Forti, L. Rosa and F. Garlaschi,FEBS. Letters,27 (1972) 23.

    PubMed  Google Scholar 

  28. W.S. Zaugg and J.S. Rieske,Biochem. Biophys. Res Commun.,9 (1962) 213.

    PubMed  Google Scholar 

  29. N. Sato, D.F. Wilson and B. Chance,Biochim. Biophys. Acta,253 (1971) 88.

    PubMed  Google Scholar 

  30. T. Ozawa, Y. Takahashi, A.N. Malviya and K. Yagi,Biochem. Biophys. Res. Commun.,61 (1974) 651.

    PubMed  Google Scholar 

  31. S.P. Singer and G.L. Nicolson,Science,175 (1972) 720.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ozawa, T., Malviya, A.N., Takahashi, Y. et al. Reducibility of cytochromeb in mitochondrial inner membrane. J Bioenerg Biomembr 7, 201–214 (1975). https://doi.org/10.1007/BF01558548

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01558548

Keywords

Navigation