Skip to main content
Log in

Conversion ofEscherichia coli cell-produced metabolic energy into electric form

  • Published:
Journal of bioenergetics Aims and scope Submit manuscript

Abstract

The formation of membrane potential in energizedE. coli cells has been investigated by means of ionic penetrants. The fluxes of anions and cations in opposite directions have been observed: anions moved out and cations moved into the cells. The energy-linked uptake of cations was stoichiometrically coupled with the outflow of H+ ions from the cells. The value of a membrane potential in the energized cells calculated from a distribution of permanent cations was in the range of −140mV (inside minus). The uptake of penetrating cations by deenergized cells has been observed following the non-enzymatic generation of a membrane potential. The influx of synthetic and natural (lactose) penetrants collapsed the non-enzymatic membrane potential. The effect of lactose was sensitive to N-ethyl maleimide. These results are in favour of the conception that in the energizedE. coli cells an energy-linked H+-pump generates a membrane potential which is a driving force for the transport of synthetic and some natural penetrants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CCCP:

(carbonylcyanide p-trichloromethoxyphenylhydrazone)

NEM:

(N-ethyl maleimide)

PCB :

(phenyl dicarbaundecaborane anion

TPMP+ :

(triphenyl methylphosphonium cation)

DDA+ :

(triphenyl methylphosphonium cation)

DDA+ :

(N,N-dibenzyl N,N-dimethyl ammonium cation)

DCCD:

(N,N-dicyclohexylcarbodiimide)

References

  1. P. Mitchell,Symp. Soc. Gen. Microbiol.,20 (1970) 121.

    Google Scholar 

  2. F. M. Harold,Bact. Rev.,36 (1972) 172.

    PubMed  Google Scholar 

  3. P. Mitchell,J. Bioenergetics,4 (1973) 63.

    Google Scholar 

  4. P. Scholes and P. Mitchell,J. Bioenergetics,1 (1970) 309.

    Google Scholar 

  5. I. C. West and P. Mitchell,J. Bioenergetics,3 (1972) 445.

    Google Scholar 

  6. E. A. Liberman and L. M. Tsofina,Biofizika U.S.S.R.,14 (1969) 1017.

    Google Scholar 

  7. L. L. Grinius, A. A. Jasaitis, Yu. P. Kadziauskas, E. A. Liberman, V. P. Skulachev, V. P. Topali, L. M. Tsofina and M. A. Vladimirova,Biochem. Biophys. Acta,216 (1970) 1.

    PubMed  Google Scholar 

  8. E. A. Liberman and V. P. Skulachev,Biochim. Biophys. Acta,216 (1970) 30.

    PubMed  Google Scholar 

  9. V. P. Skulachev, in:Current Topics in Bioenergetics, D. R. Sanadi (ed.), Vol, 4, Academic Press, New York and London, 1971, p. 127.

    Google Scholar 

  10. H. Hirata, K. Altendorf and F. M. Harold,J. Biol. Chem.,249 (1974) 2939.

    PubMed  Google Scholar 

  11. F. M. Harold and D. Papineau,J. Membrane Biol.,8 (1972) 45.

    Google Scholar 

  12. F. J. Lombardi, J. P. Reeves and H. R. Kaback,J. Biol. Chem.,248 (1973) 3551.

    PubMed  Google Scholar 

  13. H. Hirata, K. Altendorf and F. M. Harold,Proc. Nat. Acad. Sci., U.S.A.,70 (1973) 1804.

    Google Scholar 

  14. B. Griniuviené, V. Chmieliauskaité and L. Grinius,Biochem. Biophys. Res. Commun.,56 (1974) 206.

    PubMed  Google Scholar 

  15. R. J. Fisher, K. W. Lam and D. R. Sanadi,Biochem. Biophys. Res. Commun.,39 (1970) 1021.

    PubMed  Google Scholar 

  16. B. D. Davis and E. S. Mingioli,J. Bacteriol,60 (1950) 17.

    PubMed  Google Scholar 

  17. P. Mitchell and J. Moyle,Biochem. J.,104 (1967) 588.

    PubMed  Google Scholar 

  18. P. Mitchell and J. Moyle,Biochem. J.,105 (1967) 1147.

    Google Scholar 

  19. U. Hopfer, A. L. Lehninger and T. E. Thompson,Proc. Nat. Acad. Sci., U.S.A.,59 (1968) 484.

    Google Scholar 

  20. V. P. Skulachev, A. A. Jasaitis, V. V. Navickaité, L. S. Yaguzhinsky, E. A. Liberman V. P. Topali and L. M. Tsofina, in:Mitochondrial Structure and Function, L. Ernster and Z. Drahota (eds), Academic Press, New York and London, 1969, p. 275.

    Google Scholar 

  21. H. H. Winkler and T. H. Wilson,J. Biol. Chem.,241 (1966) 2200.

    PubMed  Google Scholar 

  22. S. G. Schultz, N. L. Wilson and W. Epstein,J. Gen. Physiol.,46 (1962) 159.

    PubMed  Google Scholar 

  23. L. E. Bakeeva, L. L. Grinius, A. A. Jasaitis, V. V. Kuliene, D. O. Levitsky, E. A. Liberman, I. I. Severina and V. P. Skulachev,Biochim. Biophys. Acta,216 (1970) 13.

    PubMed  Google Scholar 

  24. L. L. Grinius, M. D. Ilina, E. I. Mileykovskaya, V. P. Skulachev and G. V. Tikhonova,Biochim. Biophys. Acta,283 (1972) 442.

    PubMed  Google Scholar 

  25. A. A. Jasaitis, I. B. Nemeĉek, I. I. Severina, V. P. Skulachev and S. M. Smirnova,Biochim. Biophys. Acta,275 (1972) 442.

    PubMed  Google Scholar 

  26. A. A. Jasaitis, L. V. Chu and V. P. Skulachev,FEBS Letters,31 (1973) 241.

    PubMed  Google Scholar 

  27. G. van Thienen and P. W. Postna,Biochim. Biophys. Acta,323 (1973) 429.

    PubMed  Google Scholar 

  28. W. L. Klein and P. D. Boyer,J. Biol. Chem.,247 (1972) 7257.

    PubMed  Google Scholar 

  29. I. C. West and P. Mitchell,FEBS Letters 40 (1974) 1.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griniuvienė, B., Chmieliauskaitė, V., Melvydas, V. et al. Conversion ofEscherichia coli cell-produced metabolic energy into electric form. J Bioenerg Biomembr 7, 17–37 (1975). https://doi.org/10.1007/BF01558460

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01558460

Keywords

Navigation