Skip to main content
Log in

A molecular modeling study on binding of drugs to calmodulin

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

Computer-graphical methods have been used to study the interaction between a series of drugs and calmodulin. Based on the X-ray crystallographic coordinates of the α-C atoms of calmodulin, a molecular model of the helical sequences was built. The model has been used to derive two possible binding sites for phenothiazines and one binding site for penfluridol. The principal binding forces occur through contacts between acidic amino acids of calmodulin and the protonated side-chain nitrogen of the drugs as well as between a basic amino acid and the electronegative substituents of the aromatic rings. Calculated interaction energies show a good correlation with experimental inhibition data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cheung, W.Y., In Cheung, W.Y. (Ed.), Calcium and Cell Function, Vol. 1 (Calmodulin), Academic Press, New York, NY, 1980, pp. 2–9.

    Google Scholar 

  2. Babu, Y.S., Sack, J.S., Greenhough, T.J., Bugg, C.E., Means, A.R. and Cook, W.J., Nature, 313 (1985) 37–40.

    Google Scholar 

  3. Levin, R.M. and Weiss, R., Mol. Pharmacol., 12 (1976) 581–589.

    PubMed  Google Scholar 

  4. Dalgarno, D.C., Klevit, R.E., Levine, B.A., Scott, G.M.M., Williams, R.J.P., Gergely, J., Grabarek, Z., Leavis, P.C., Grand, R.J.A. and Drabikowski, W., Biochim. Biophys. Acta, 791 (1984) 164–172.

    PubMed  Google Scholar 

  5. Prozialeck, W.C. and Weiss, B., J. Pharmacol. Exp. Then., 222 (1982) 509–516.

    Google Scholar 

  6. Buerkler, J., Krebs, J. and Carafoli, E., Cell Calcium, 8 (1987) 123–143.

    PubMed  Google Scholar 

  7. Gariepy, J. and Hodges, R.S., Biochemistry, 22 (1983) 1586–1594.

    PubMed  Google Scholar 

  8. Reid, R.E., J. Theor. Biol., 105 (1983) 63–76.

    PubMed  Google Scholar 

  9. Krebs, J. and Carafoli, E., Eur. J. Biochem., 124 (1982) 619–627.

    PubMed  Google Scholar 

  10. Jackson, A.E. and Puett, D., Biochem. Pharmacol., 35 (1986) 4395–4400.

    PubMed  Google Scholar 

  11. TRIPOS Assoc. Inc., St. Louis, MO, U.S.A.

  12. McDowell, J.J.H., Acta Crystallogr., Sect. B., 25 (1969) 2175–2181.

    Google Scholar 

  13. Pullman, B., Adv. Quantum Chem., 10 (1977) 251–328.

    Google Scholar 

  14. Koetzle, T.F., Williams, G., Meyer, E.F., Brice, M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T. and Tasumi, M., J. Mol. Biol., 112 (1977) 535–542.

    PubMed  Google Scholar 

  15. Gasteiger, J. and Marsili, M., Tetrahedron, 36 (1980) 3219–3226.

    Google Scholar 

  16. Anthoni, R., Karl, N., Robertson, B.E. and Stezowski, J.J., J. Chem. Phys. 72 (1980) 1244–1255.

    Google Scholar 

  17. Gresh, N. and Pullman, B., Mol. Pharmacol., 29 (1986) 355–362.

    PubMed  Google Scholar 

  18. Levin, R.M. and Weiss, R., J. Pharmacol. Exp. Ther., 208 (1979) 454–459.

    PubMed  Google Scholar 

  19. Strynadka, N.C.J. and James, M.N.G., Proteins, 3 (1988) 1–17.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Höltje, H.D., Hense, M. A molecular modeling study on binding of drugs to calmodulin. J Computer-Aided Mol Des 3, 101–109 (1989). https://doi.org/10.1007/BF01557722

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01557722

Key words

Navigation