Skip to main content
Log in

Kalman filter estimation for periodic autoregressive-moving average models

  • Originals
  • Published:
Stochastic Hydrology and Hydraulics Aims and scope Submit manuscript

Abstract

An exact maximum likelihood procedure is presented for estimating the parameters of a periodic autogressive-moving average (PARMA) model. To develop an estimator which is both statistically and computationally efficient, the PARMA class of models is written using a state-space representation and a Kalman filtering algorithm is used to estimate the parameters. In order to demonstrate how to fit PARMA models in practice, the most appropriate types of PARMA models are identified for fitting to two average monthly riverflow time series and the new estimator is employed for estimating the model parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akaike, H. 1980: Likelihood and the Bayes procedure in Bayesian statistics. In Bernardo, J.N.; DeGroot, M.H.; Lindley, D.V.; Smith, A.F.M. (eds.) Bayesian statistics, pp. 141–166. Valencia, Spain University Press

    Google Scholar 

  • Ansley, C.F. 1979: An algorithm for the exact likelihood of a mixed autoregressive-moving average process. Biometrika 66, 59–65

    Google Scholar 

  • Ansley, C.F.; Kohn, R. 1983: Exact likelihood of a vector autoregressive process with missing or aggregated data. Biometrika 70, 275–278

    Google Scholar 

  • Box, G.E.P.; Jenkins, G.M. 1976: Time series analysis, forecasting, and control. Holden-Day, San Francisco

    Google Scholar 

  • Chiu, C.L. (Ed.) 1978: Application of Kalman filter to hydrology, hydraulics and water resources. University of Pittsburgh Press, Pittsburgh

    Google Scholar 

  • Cipra, T. 1985a: Periodic moving average processes. Aplikace Matematily 30, 218–29

    Google Scholar 

  • Cipra, T. 1985b. Statistical analysis of multiple moving average processes using periodicity. Kybernetica 21, 335–45

    Google Scholar 

  • Cipra, T.; Tlusty, P. 1987: Estimation of multiple autoregressive-moving average models using periodicity. J. Time Series 8, 293–301

    Google Scholar 

  • Croley II, T.E.; Rao, K.N.R. 1977: A manual for hydrological time series deseasonalization and serial independence reduction. Iowa Institute of Hydraulic Research, Report No. 199, The University of Iowa, Iowa City, Iowa

    Google Scholar 

  • Dunsmuir, W. 1981: Estimation of periodically varying means and standard deviations in time series data. J. Time Series 2, 129–153

    Google Scholar 

  • Dunsmuir, W. 1983: Time series regression with periodically correlated error and missing data. In: E. Parzen (Ed.) Time series analysis of irregularly observed data. Lecture Notes in Statistics, No. 25, Springer-Verlag, New York

    Google Scholar 

  • Environment Canada 1978: Historical streamflow summary, Ontario. Water Survey of Canada, Inland Waters Directorate, Water Resources Branch, Ottawa, Canada

    Google Scholar 

  • Gardner, G.; Harvey, A.C.; Phillips, G.D.A. 1980: An algorithm for the exact maximum likelihood estimation of autoregressive moving average models by means of Kalman filtering. Appl. Statistics 29, 311–322

    Google Scholar 

  • Gladeshev, E.G. 1961: Periodically correlated random sequences. Soviet Mathematics 2, 385–388

    Google Scholar 

  • Gladeshev, E.G. 1963: Periodically and almost-periodically correlated random processes with a continuous time parameter. Theory of Probab. and its Appl. 8, 173–177

    Google Scholar 

  • Hipel, K.W.; McLeod, A.I. 1990: Time series modelling for water resources and environmental engineers. Elsevier, Amsterdam, (in press)

    Google Scholar 

  • Jazwinski, A.H. 1970: Stochastic processes and filtering theory. Academic Press, New York

    Google Scholar 

  • Jimenez, C. 1988: Advances in time series with hydrological applications. Ph. D. Thesis, Dept. of Statistics and Actuarial Sciences, The University of Western Ontario, London, Ontario, Canada

    Google Scholar 

  • Jones, R.H.; Brelsford, W.M. 1967: Time series with periodic structure. Biometrika 54, 403–408

    PubMed  Google Scholar 

  • Kalman, R.E. 1960: A new basic approach to linear filtering and prediction problems. Trans. ASME, Journal of Basic Engineering, Ser. D 80, 35–45

    Google Scholar 

  • Kohn, R.; Ansley, C.F. 1982: A note on obtaining the theoretical autocovariances of an ARMA process. J. Statist. Comput. Simul. 15, 273–283

    Google Scholar 

  • Levenberg, K., 1944: A method for the solution of certain non-linear problems in least squares. Quart. Appl. Math. 2, 164–168

    Google Scholar 

  • Marquardt, D.W., 1963: An algorithm for least squares estimation of nonlinear parameters. SIAM 11, 431–441.

    Google Scholar 

  • McLeod, A.I.; Hipel, K.W. 1978: Developments in monthly autoregressive modeling. Technical Report No. 45-XM-011178, Dept. of Systems Design Engineering, Univ. of Waterloo, Ontario, Canada

    Google Scholar 

  • Morf, M.; Sidhu, G.S.; Kailath T. 1974: Some new algorithms for recursive estimation in constant, linear, discrete-time systems. IEEE Transactions on Automatic Control AC-19, 315–323

    Google Scholar 

  • Moss, M.E.; Bryson, M.C. 1974: Autocorrelation structure of monthly streamflows. Water Resources Research 10, 737–744

    Google Scholar 

  • Noakes, D.J.; McLeod, A.I.; Hipel, K.W. 1985: Forecasting monthly riverflows time series. International Journal of Forecasting 1, 179–190

    Google Scholar 

  • Pagano, M. 1978: On periodic and multiple autoregressions. Annals of Mathematical Statistics 6, 1310–1317

    Google Scholar 

  • Pearlman, J.G. 1980: An algorithm for the exact likelihood of a high-order autoregressive-moving average process. Biometrika 67, 232–233

    Google Scholar 

  • Sakai, H. 1982: Circular lattice filtering using Pagano's method. IEEE Transactions on Acoustics, Speech, and Signal Processing ASSP-30, 279–286

    Google Scholar 

  • Salas, J.D.; Boes D.C.; Smith R.A. 1982: Estimation of ARMA models with seasonal parameters. Water Resources Research 18, 1006–1010

    Google Scholar 

  • Salas, J.D.; Delleur, J.W.; Yevjevich, V.; Lane, W.L. 1980: Applied modelling of hydrological series. Water Resources Publications, Littleton, Colorado.

    Google Scholar 

  • Salas, J.D.; Pegram, G.G.S. 1978: A seasonal multivariate multilay autoregressive model in hydrology. In Morel-Seytoux, H.; Salas, J.D.; Sanders T.G.; Smith R.E. (eds.) Modeling hydrological processes. Water Resources Publications, Littleton, Colorado.

    Google Scholar 

  • Salas, J.D.; Tabios III, G.Q.; Bartolini, P. 1985: Approaches to multivariate modeling of water resources time series. Water Resources Bulletin 21, 683–708

    Google Scholar 

  • Shea B.L. 1987: Estimation of multivariate time series. J. Time Series 8, 95–111

    Google Scholar 

  • Tao, P.C.; Delleur, J.W. 1976: Seasonal and nonseasonal ARMA models. ASCE, Journal of the Hydrology Division 102, 1541–1559

    Google Scholar 

  • Thomas, H.A.; Fiering, M.B. 1962: Mathematical synthesis of stream flow sequences for the analysis of river basins by simulation. In: Maass et al. (eds.) Design of water resources system, pp. 459–493. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Tiao, G.C.; Gruppe M.R. 1981: Hidden periodic autoregressive-moving average models. Biometrika 67, 365–373

    Google Scholar 

  • Troutman, B.M. 1979: Some results in periodic autoregression. Biometrika 66, 219–228

    Google Scholar 

  • Vecchia, A.V. 1983: Aggregation and estimation for periodic autoregressive moving average models. Ph.D. Dissertation, Dept. of Statistics, Colorado State University, Fort Collins, CO

    Google Scholar 

  • Vecchia, A.V.; Obeysekera, J.T.; Salas, J.D.; Boes, D.C. 1983: Aggregation and estimation for low-order periodic ARMA models. Water Resourc. Res. 19, 1297–1306

    Google Scholar 

  • Vecchia, A.V. 1985a: Maximum likelihood estimation for periodic autoregressive moving average models. Technometrics 27, 375–384

    Google Scholar 

  • Vecchia, A.V. 1985b: Periodic autoregressive-moving average (PARMA) modelling with applications to water resources. Water Resources Bulletin 21, 721–730

    Google Scholar 

  • Yevjevich, V. 1972: Stochastic processes in hydrology. Water Resources Publ., Littleton, Colorado

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jimenez, C., McLeod, A.I. & Hipel, K.W. Kalman filter estimation for periodic autoregressive-moving average models. Stochastic Hydrol Hydraul 3, 227–240 (1989). https://doi.org/10.1007/BF01543862

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01543862

Key words

Navigation