Skip to main content
Log in

Mechanical properties of tape composites

  • Originalarbeiten
  • Polymere
  • Published:
Kolloid-Zeitschrift und Zeitschrift für Polymere Aims and scope Submit manuscript

Summary

The stiffness and strength of tape-reinforced composites have been calculated by using the finite-element method, simple model theory and the von Mises-Hencky criterion. The tapes are assumed to be oriented uniaxially in both the longitudinal and transverse directions. According to the theoretical calculations, substantial increases in two basic moduli and a transverse strength are possible with the tape systems, as compared with the corresponding fiber systems. The calculations are based mainly on glassepoxy composites.

Zusammenfassung

Die Steifigkeit und Festigkeit der band-verstärkten Verbundwerkstoffe wurden nach der Methode der endlichen Größe, der einfachen Modelltheorie und der von-Mises-Hencky-Hypothese berechnet. Die Bänder wurden als einachsig in beiden Richtungen orientiert, nämlich in Längsrichtung und Querrichtung, betrachtet. Nach den theoretischen Berechnungen ermöglicht das Bandsystem, verglichen mit dem entsprechenden Fasersystem, bedeutende Zunahmen der beiden fundamentalen Moduli und der transversalen Festigkeit. Die Berechnungen basieren hauptsächlich auf Glas-Epoxid-Verbundwerkstoffen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

B m :

Bulk modulus of the matrix material

E f :

Young's modulus of the filler material

E m :

Young's modulus of the matrix material

E L :

Longitudinal composite modulus (parallel to the lengths of the tapes or fibers)

E T :

Transverse composite modulus (parallel to the widths of the tapes in the case of tape composites)

E TT :

Transverse composite modulus (perpendicular to the widths of the tapes in the case of tape composites)

G f :

Shear modulus of the filler material

G m :

Shear modulus of the matrix material

G LT :

Longitudinal-transverse composite shear modulus (with the longitudinal axis parallel to the lengths of the tapes, and the transverse axis parallel to their widths, in the case of tape composites)

G LT′ :

Longitudinal-transverse composite shear modulus (with the longitudinal axis parallel to the lengths of the tapes, and the transverse axis perpendicular to their widths, in the case of tape composites)

G TT :

Transverse composite shear modulus (parallel and perpendicular to the widths of the tapes in the case of tape composites)

S m :

Strength of the matrix material

S T :

Transverse composite strength (parallel to the widths of the tapes in the case of tape composites)

S TT :

Transverse composite strength (perpendicular to the widths of the tapes in the case of tape composites)

v f :

Poisson's ratio of the filler material

v m :

Poisson's ratio of the matrix material

U max , U′ max :

Maximum normalized distortional energies for applied normal stresses in x- and y-directions (see Appendix)

V f :

Filler volume content

V m :

Matrix volume content

x, y :

Rectangular coordinates

u, v :

Displacement in x and y-directions

u 1, v 1 :

Displacements in x and y-directions for Case 1 in the Appendix

u 2, v 2 :

Displacements in x and y-directions for Case 2 in the Appendix

σ 1, σ 2 :

Principal stresses

\(\bar \sigma _{x1} ,\bar \sigma _{y1} \) :

Average normal stresses in x and y-directions for Case 1 in the Appendix

\(\bar \sigma _{x2} ,\bar \sigma _{y2} \) :

Average normal stresses in x and y-directions for Case 2 in the Appendix

\(\bar \sigma _x ,\bar \sigma _y \) :

Average normal stresses in x and y-directions for Case 3 in the Appendix

τ xy :

Shearing stress in xy-plane parallel to x or y-axis

a,b :

Width and length of the typical region

w, t :

Width and thickness of the tape

F.E.M. :

Results obtained by using the finite-element method

S.M.T. :

Results obtained by using the simple model theory

References

  1. Hermans, J. J., Koninklijke Nederlandse Akademie van Wetenschappen, Amsterdam. Proceedings, Series B, Vol. 70, 1 (1967).

    Google Scholar 

  2. Greszczuk, L. B., Proceedings of the 21st Annual Conference of the Reinforced Plastics Division, Society of Plastics Industry, Section 8-A (1966).

  3. Adams, D. F., D. R. Doner and R. L. Thomas, “Mechanical Behavior of Fiber-Reinforced Composite Materials”, AFML-TR-67-96 (May 1967). Air Force Materials Laboratory, Wright-Patterson Air Force Base, Ohio.

    Google Scholar 

  4. Tsai, S. W., “Formulas for the Elastic Properties of Fiber-Reinforced Composites”, AFML Review of Mechanics of Composite Materials for Air Force Contractors (Jan. 1968), Air Force Materials Laboratory.

  5. Hashin, Z. and B. W. Rosen. J. Applied Mechanics 31, 223 (1964).

    Google Scholar 

  6. Hill, R., J. Mech. Phys. Solids 12, 199 (1964).

    Article  Google Scholar 

  7. Whitney, J. M. and M. B. Riley, “Elastic Stress-Strain Properties of Fiber Reinforced Composite Materials”, AFML-TR-65-238 (Dec. 1965). Air Force Materials Laboratory.

  8. Turner, M. J., R. W. Clough, H. C. Martin and L. J. Topp, J. Aeronautical Sciences 23, 805 (1956).

    Google Scholar 

  9. Clough, R. W., The Finite Element Method in Plane Stress Analysis, NSF Report, Research Grant G-7337 (1960).

  10. Martin, H. C., Plane Elasticity Problems and the Direct Stiffness Method. The Trend in Engineering. University of Washington, p. 5 (1961).

  11. Tsai, S. W., Structural Behavior of Composite Materials. NASA Contractor Report CR-71 (July 1964). National Aeronautics and Space Administration.

  12. Nadai, A., Theory of Flow and Fracture of Solids. (New York 1950).

  13. Hoffman, 0. and G. Sachs, Introduction to the Theory of Plasticity for Engineers (New York 1953).

  14. Hill. R., The Mathematical Theory of Plasticity (London 1950).

  15. Prager, W., An Introduction to Plasticity (London 1959).

  16. von Mises, R., Göttinger Nachrichten, math.-phys. Klasse 1913, S. 582.

  17. Hencky, H., Z. angew. Math. Mech. 4, 323 (1924).

    Google Scholar 

  18. Chen, P. E. and J. M. Lin, “Transverse Properties of Fibrous Composites”. Materials Research & Standards, Vol. 9, Nr. 8 (August 1969).

  19. Sadowsky, M. A., “Transfer of Force by High-Strength Flakes in a Composite Material”, Technical Report WVT-RR-0105-R (June 1961). Army Watervliet Arsenal. Watervlict, New York.

    Google Scholar 

  20. Tsai, S. W., D. F. Adams and D. R. Doner, “Effect of Constituent Material Properties on the Strength of Fiber-Reinforced Composite Materials”, AFML-TR-66-190 (Aug. 1966). p. 38. Air Force Materials Laboratory.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Contribution HPC 68–72 from the Monsanto/ Washington University ONR/ARPA Association, “High Performance Composites”, St. Louis, Missouri, Contract ONR No. N 00014-67-C-0218, formerly Contract ONR No. N 00014-66-C-0045.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, P.E., Nielsen, L.E. Mechanical properties of tape composites. Kolloid-Z.u.Z.Polymere 235, 1174–1181 (1969). https://doi.org/10.1007/BF01542524

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01542524

Keywords

Navigation