Skip to main content
Log in

Fully developed laminar mixed convection in uniformly heated pipes

Ausgebildete Laminarmischkonvektion in gleichförmig beheizten Rohren

  • Originalarbeiten
  • Published:
Wärme - und Stoffübertragung Aims and scope Submit manuscript

Abstract

Approximate solutions are carried out for fully developed laminar mixed convection in uniformly heated horizontal pipes. The problem considered is steady state and validity of the Boussinesq approximation is assumed. The analysis reveals that the relevant parameters are the Prandtl number and the product of the Rayleigh number based on temperature gradient along the pipe wall and of the Reynolds number based on pressure gradient along the pipe axis. Solutions for the velocity and temperature fields are obtained by a spectral Galerkin method, which proves capable of giving rapid convergence and, by implication, good accuracy, as demonstrated by the comparison with other numerical predictions. The results are presented in terms of fluid flow patterns, isotherms, and graphs of mass flow rate, local and average Nusselt number for various values of the parameters.

Zusammenfassung

Es werden Näherungslösungen für ausgebildete Laminarmischkonvektion in gleichförmig beheizten Rohren angeboten. Die Boussinesq-Approximation geht bei der Ermittlung des Stationärzustandes als Voraussetzung ein. Die Untersuchung zeigt, daß als relevante Parameter die Prandtl-Zahl und das Produkt aus Rayleigh-Zahl (basierend auf dem Temperaturgradienten entlang der Rohrwand) und Reynolds-Zahl (basie-rend auf dem Druckgradienten entlang der Rohrachse) auftreten. Lösungen für die Geschwindigkeits- und Temperaturfelder werden mit Hilfe einer spektralen Galerkinmethode erhalten, die rasche Konvergenz zeigt und auf gute Genauigkeit schließen läßt, wie durch Vergleich mit anderen numerischen Vorhersagen gezeigt werden kann. Die Ergebnisse werden in Form von Strömungsbildern, von Isothermen und von Diagrammdarstellungen des Massenstroms, der lokalen und der gemittelten Nußelt-Zahl als Funktion verschiedener Parameter angeboten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

pipe radius

A, B :

dummy functions

c :

specific heat

c ij :

normalizing factors

d ij :

normalizing factors

f :

dimensionless stream function

f ij :

expansion coefficients forf N,M

f N,M :

approximate solution forf

F ij :

trial functions forf N,M

g :

acceleration due to gravity

G ij :

trial functions forW N,M and θN,M

h :

local heat transfer coefficient

\(\bar h\) :

average heat transfer coefficient

J :

Jacobian operator

I i :

Bessel function of orderi

J i :

modified Bessel function of orderi

k :

thermal conductivity

m :

mass flow rate

N :

number of radial modes

M :

number of circumferential modes

Nu :

local Nusselt number

\(\overline {Nu}\) :

average Nusselt number

p :

pressure

p′:

pressure distribution in the cross section defined by Eq. (2)

P :

dimensionless pressure

Pr :

Prandtl number

q :

heat flux

Q :

heat flow per unit length

r :

radial coordinate

R :

dimensionless radial coordinate

Ra :

Rayleigh number

Re :

Reynolds number

T :

temperature

T′:

temperature distribution in the cross section defined by Eq. (1)

u, v, w :

radial, tangential and axial velocity

U, V, W :

dimensionless radial, tangential and axial velocity

w i,j :

expansion coefficient forW N,M

x :

dummy variable

z :

axial coordinate

β :

coefficient of thermal expansion

γ :

axial pressure gradient

μ :

convergence parameter

∇:

gradient operator

Δ:

Laplace operator

Δ2 :

biharmonic operator

θ :

dimensionless temperature

θ i,j :

expansion coefficient forθ N,M

λ ij :

eigenvalues

μ :

viscosity

ν ij :

eigenvalues

ρ :

density

τ :

axial temperature gradient

ψ :

tangential coordinate

References

  1. Ede, A. J. The Heat Transfer Coefficient for Flow in a Pipe. Int. J. Heat Mass Transfer 4 (1961) 105–110

    Google Scholar 

  2. Morton, B.R. Laminar Convection in Uniformly Heated Horizontal Pipes at Low Rayleigh Numbers. Quart. Journ. Mech. and Applied Math., XII, part 4 (1959) 410–420

    Google Scholar 

  3. Iqbal, M.;Stachiewicz, J. W. Influence of Tube Orientation on Combined Free and Forced Laminar Convection Heat Transfer. ASME J. Heat Transfer, Series C, 88 (1966) 109–116

    Google Scholar 

  4. Prusa, J.;Yao, L. S. Numerical Solution for Fully Developed Flow in Heated Curved Tubes. J. Fluid. Mech. 123 (1982) 503–522

    Google Scholar 

  5. Chandrasekhar, S. Hydrodynamic and Hydromagnetic Stability. Appendix V, Oxford University Press, London, 1970

    Google Scholar 

  6. Bowman, P. Introduction to Bessel Functions. Dover, New York, 1958

    Google Scholar 

  7. Mikhlin, G. The Numerical Performance of Variational Methods. Wolters-Noordhoff Publishing, Groningen, The Netherlands, 1971

    Google Scholar 

  8. Abramowitz, M.;Stegun, I. A. Handbook of Mathematical Functions. Dover Publications Inc., New York, 1965

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muzzio, A., Parolini, P. Fully developed laminar mixed convection in uniformly heated pipes. Warme - Und Stoffubertragung 29, 487–494 (1994). https://doi.org/10.1007/BF01539501

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01539501

Keywords

Navigation