Skip to main content
Log in

Thiophosphate as a probe for mitochondrial oxidative phosphorylation, model phosphorylation reactions and membrane permeability

  • Published:
Journal of bioenergetics Aims and scope Submit manuscript

Abstract

  1. 1.

    Monothiophosphate was used as a probe for substrate level phosphorylation, mitochondrial oxidative phosphorylation, and membrane permeability.

  2. 2.

    Thiophosphate does not support ATP synthesis either in mitochondria or model enzymic reactions, conservation of oxidative energy occurring through formation of ATP(γ)S.

  3. 3.

    Thiophosphoryl transfer is slower compared to phosphoryl (group) transfer. Such behavior is compatible with an addition-elimination mechanism.

  4. 4.

    Thiophosphate accumulates in mitochondria by an energydependent process and substitutes for phosphate in the catalysis of metabolite transport. Relative to phosphate, a slower and less extensive permeation was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

TMPD:

N,N,N',N'-tetramethyl-p-phenylene-diamine dihydrochloride

MES:

2 (N-morpholino)ethane sulfonic acid

TES:

N-tris (Hydroxymethyl) methyl-2-aminomethane sulfonic acid

PEI:

polyethyleneimine

ATP(γ)S:

thiophosphoryl ADP

DTT:

dithiothreitol

RLM:

rat liver mitochondria

SP:

thiophosphate

GAPDH:

glyceraldehyde-3-phosphate dehydrogenase

PGK:

phosphoglycerate kinase

MOPS:

morpholinopropane sulfonic acid.

References

  1. R. L. Cross, B. A. Cross and J. H. Wang,Biochem. Biophys. Res. Commun.,40 (1970) 1155.

    PubMed  Google Scholar 

  2. R. C. Stancliff, M. A. Williams, K. Utsumi and L. Packer,Arch. Biochem. Biophys.,131 (1969) 629.

    PubMed  Google Scholar 

  3. S. F. Velick, in: S. P. Colowick and N. O. Kaplan,Methods in Enzymology, Vol. I, Academic Press, New York, 1955, p. 401.

    Google Scholar 

  4. B. C. Pressman,J. Biol. Chem.,232 (1958) 967.

    PubMed  Google Scholar 

  5. B. Hagihara and H. A. Lardy,J. Biol. Chem.,235 (1960) 889.

    PubMed  Google Scholar 

  6. R. S. Goody and F. Eckstein,J. Amer. Chem. Soc.,93 (1971) 6252.

    Google Scholar 

  7. R. M. C. Dawson, D. C. Elliott, W. H. Elliot and K. M. Jones.Data for Biochemical Research, Clarendon Press, Oxford, 2nd ed., 1969.

    Google Scholar 

  8. C. S. Furfine and S. F. Velick,J. Biol. Chem.,240 (1965) 884.

    Google Scholar 

  9. T. R. Sato, J. F. Thomson and W. F. Danforth,Arch. Biochem. Biophys.,101 (1963) 31.

    PubMed  Google Scholar 

  10. J. B. Chappell and A. R. Crofts, in: J. T. Tager, S. Papa, E. Quagliariello and E. C. Slater,Regulation of Metabolic Processes in Mitochondria, BBA Library, Vol. 7, Elsevier, Amsterdam, 1966, p. 293.

    Google Scholar 

  11. J. B. Chappell and K. N. Haarhoff, in: E. C. Slater, Z. Kaniuga and L. Wojtczak,Biochemistry of Mitochondria, Academic Press, London, 1967, p. 75.

    Google Scholar 

  12. L. Packer K. Utsumi and M. G. Mustafa,Arch. Biochem. Biophys.,117 (1966) 381.

    PubMed  Google Scholar 

  13. J. A. A. Ketelaar, H. R. Gersmann, and K. Koopmans,Rec. Trav. Chim.,71 (1952) 1253.

    Google Scholar 

  14. R. Breslow, I. Katz,J. Amer. Chem. Soc.,90 (1968) 7376.

    Google Scholar 

  15. P. Mushack and J. E. Coleman,Biochemistry,11 (1972) 201.

    PubMed  Google Scholar 

  16. J. I. G. Cadogan,J. Chem. Soc., 3067 (1961).

  17. M. I. Kabachnik, T. A. Mastryukova, N. P. Radionova and E. M. Popov,Zhur. Obshchei Khim,26 (1956) 120.

    Google Scholar 

  18. R. G. Pearson,J. Am. Chem. SSoc.,85 (1963) 3533.

    Google Scholar 

  19. R. G. Pearson,Science,151 (1966) 172.

    Google Scholar 

  20. P. Mitchell and J. Moyle,European J. Biochem.,9 (1969) 149.

    Google Scholar 

  21. P. John and W. A. Hamilton,FEBS Letters,10 (1970) 246.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tavares de Sousa, J., Packer, L. & Schonbaum, G.R. Thiophosphate as a probe for mitochondrial oxidative phosphorylation, model phosphorylation reactions and membrane permeability. J Bioenerg Biomembr 3, 539–552 (1972). https://doi.org/10.1007/BF01539063

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01539063

Keywords

Navigation