Skip to main content
Log in

Novel genetic instability associated with a developmental regulated glycosyltransferase locus in Chinese hamster ovary cells

  • Published:
Somatic Cell and Molecular Genetics

Abstract

LEC10 is a dominant glycosylation mutant of Chinese hamster ovary (CHO) cells that expresses a developmentally regulated glycosyltransferase (GlcNAc-TIII) not detectable in parental CHO cells. Several mutagens were found to increase the frequency of LEC10 mutants up to 10-fold over the spontaneous frequency of ≤10−7, while 5azaC treatment had no effect. Revenants were obtained at high frequency (∼10−4) and were found to belong to two classes. Three independent revertants gave rise to new LEC10 mutants at high frequency (∼10−4) while seven others gave new LEC10 mutants at the low frequency typical of unmutagenized parental CHO cells. No evidence of a general mutator phenotype was found in the revenant lines with a high rereversion frequency. The combined data suggest a novel form of genomic instability at the LEC10 locus in CHO cells. Genetic events that affect the expression of developmentally regulated glycosyltransferases may be identified by further studies of LEC10 and other dominant CHO glycosylation mutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. Feizi, T. (1985).Nature 314:53–57.

    PubMed  Google Scholar 

  2. Hakomori, S.I. (1985).Cancer Res. 45:2405–2414.

    PubMed  Google Scholar 

  3. Stanley, P. (1984).Annu. Rev. Genet. 18:525–552.

    PubMed  Google Scholar 

  4. Stanley, P. (1987).Trends Genet. 3:77–81.

    Google Scholar 

  5. Campbell, C., and Stanley, P. (1984).J. Biol. Chem. 261:13370–13378.

    Google Scholar 

  6. Narasimhan, S. (1982).J. Biol. Chem. 257:10235–10242.

    PubMed  Google Scholar 

  7. Narasimhan, S., Lee, J.W.W., Cheung, R.K., Gelfand, E.W., and Schachter, H. (1988).Biochem. Cell Biol. 66:889–900.

    PubMed  Google Scholar 

  8. Yoshima, H., Shiraishi, N., Matsumoto, A., Maeda, S., Sugiyama, T., and Kobata, A. (1982).J. Biochem. (Tokyo) 91:233–246.

    Google Scholar 

  9. Narasimhan, S., Schachter, H., and Rajalakshmi, S. (1988).J. Biol. Chem. 263:1273–1281.

    PubMed  Google Scholar 

  10. Spooncer, E., Fukuda, M., Klock, J.C., Oates, J.E., and Dell, A. (1984).J. Biol. Chem. 259:4792–4801.

    PubMed  Google Scholar 

  11. Mizoguchi, A., Maeda, S., Shiraishi, N., Yoshima, H., and Sugiyama, T. (1986).Cancer Res. 46:29–37.

    PubMed  Google Scholar 

  12. Mizoguchi, A., Takasaki, S., Maeda, S., and Kobata, A. (1984).J. Biol. Chem. 259:11943–11948.

    PubMed  Google Scholar 

  13. Stanley, P., Caillibot, V., and Siminovitch, L. (1975).Cell 6:121–128.

    PubMed  Google Scholar 

  14. McGarrity, G., Sarama, J., and Vanaman, V. (1979).In Vitro 15:73–81.

    PubMed  Google Scholar 

  15. Stanley, P. (1983).Methods Enzymol. 96:157–184.

    PubMed  Google Scholar 

  16. Lea, D.E., and Coulson, C.A. (1949).J. Genet. 49:264–285.

    Google Scholar 

  17. Townsend, R.R., Hilliker, E., Li, Y., Laine, R.A., Bell, W.R., and Lee, Y.C. (1982).J. Biol. Chem. 257:9704–9710.

    PubMed  Google Scholar 

  18. Stanley, P. (1982)Arch. Biochem. Biophys. 219:128–139.

    PubMed  Google Scholar 

  19. Markwell, M.A.K., Haas, M., Bieber, L.L., and Tolbert, N.E. (1978)Anal. Biochem. 87:206–210.

    PubMed  Google Scholar 

  20. Stanley, P., Caillibot, V., and Siminovitch, L. (1975).Somat. Cell Genet. 1:3–26.

    PubMed  Google Scholar 

  21. Hince, T.A., and Neale, S. (1974).Mutat. Res. 24:383–387.

    PubMed  Google Scholar 

  22. Chaney, W., and Stanley, P. (1986).J. Biol. Chem. 261:10551–10557.

    PubMed  Google Scholar 

  23. Luria, S.E., and Delbruck, M. (1943).Genetics 28:491–511.

    Google Scholar 

  24. Meuth, M., L'Heureux-Huard, N., and Trudel, M. (1979).Proc. Natl. Acad. Sci. U.S.A. 12:6505–6509.

    Google Scholar 

  25. Kelsall, A., and Meuth, M. (1988).Somat. Cell Mol. Genet. 14:149–154.

    PubMed  Google Scholar 

  26. Harris, M. (1984).Somat. Cell Mol. Genet. 10:615–624.

    PubMed  Google Scholar 

  27. Jeggo, P.A., and Holliday, R. (1986).Mol. Cell Biol. 6:2944–2949.

    PubMed  Google Scholar 

  28. Harris, M. (1986).Somat. Cell Mol. Genet. 12:459–466.

    PubMed  Google Scholar 

  29. Gottesman, M.M. (ed.). (1985).Molecular Cell Genetics (John Wiley & Sons, New York).

    Google Scholar 

  30. Gupta, R.S., and Siminovitch, L. (1978).Somat. Cell Genet. 4:715–735.

    PubMed  Google Scholar 

  31. Roeder, S.G., Farabaugh, P.J., Chaleff, D.T., and Fink, G.R. (1980).Science 209:1375–1380.

    PubMed  Google Scholar 

  32. Engels, W.R. (1989). InMobile DNA, (ed.) Berg, E.D. and Howe, M.M. (in press).

  33. French, D.L., Laskov, R., and Scharff, M.D. (1989)Science 244:1152–1157.

    PubMed  Google Scholar 

  34. Herskowitz, I., and Oshima, Y. (1981). InThe Molecular Biology of the Yeast Saccharomyces cerevisiae:Life Cycle and Inheritance. (eds.) Strathern, J.N., Jones, W.W., and Broach, J.R. (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York) pp. 181–210.

    Google Scholar 

  35. Campbell, C., and Stanley, P. (1983).Cell 35:303–309.

    PubMed  Google Scholar 

  36. Howard, D.R., Fukuda, M., Fukuda, M.N., and Stanley, P. (1987).J. Biol. Chem. 262:16830–16837.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sallustio, S., Stanley, P. Novel genetic instability associated with a developmental regulated glycosyltransferase locus in Chinese hamster ovary cells. Somat Cell Mol Genet 15, 387–400 (1989). https://doi.org/10.1007/BF01534890

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01534890

Keywords

Navigation