Skip to main content
Log in

The stability of hydrocarbon oil droplets at the surfactant/oil interface

  • Original Contributions
  • Colloid Science
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Summary

The effect of the nature of the oil on the coalescence of single oil droplets at the plane aqueous surfactant solution/oil interface has been investigated. The drop rest-times for the first stage coalescence of a range of hydrocarbon oils have been measured with constant drop volume. The apparatus was based on a design byNielsen et al. (13). Variables that affected drop lifetimes such as drop size, apparatus dimensions, saturation of the two phases with the other component, and surfactant concentration and chain length were investigated and a standard technique was developed. For saturated hydrocarbons the droplet stability falls progressively with increase in chain length. Unsaturation or aromatic character brings about a decrease in droplet stability. The results are discussed in terms of the balance between the cohesive forces between oil molecules and the adhesive forces, between the alkyl chain of the surfactant and oil molecules.

The addition of small quantities of long chain alcohol brings about a marked increase in stability through the formation of a complex condensed film at the oil/water interface. Attempts to correlate droplet stability data and the stabilities of bulk emulsion systems and spreading coefficient were not successful.

Zusammenfassung

Die Koaleszenz von Öltropfen auf planen Oberflächen von Tensiden wurde untersucht, wozu eine Standardtechnik entwickelt wurde. Bei gesättigten Kohlenwasserstoffn nimmt die Stabilität der Tröpfchen mit zunehmender Kettenlänge ab. Auch ungesättigte Bindungen und aromatische Gruppen erniedrigen die Stabilität.

Die Resultate werden diskutiert unter Berücksichtigung der kohäsiven Kräfte zwischen den Molekülen des Kohlenwasserstoffes und den adhäsiven Kräften zwischen den Alkylketten der Tenside und den Kohlenwasserstoffmolekülen.

Die Stabilität wird stark erhöht, wenn geringe Mengen langkettigen Alkohols zugesetzt werden, infolge der Bildung eines komplexen kondensierten Films an der Öl/Wasser-Grenzfläche. Versuche, die gewonnenen Stabilitätsdaten mit der Stabilität der „Bulkemulsionen” und des Spreitungskoeffizienten in Beziehung zu setzen, waren nicht erfolgreich.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

area per molecule of surfactant at the interface (nm2)

a :

activity

C :

concentration (mol dm−3)

d :

drop diameter (cm or mm)

d 0 :

mean droplet diameter on volume basis at initial storage

d t :

mean droplet diameter on volume basis aftert days storage

h :

film thickness

K :

Boltzmann's constant

K 1 :

coalescence constant

k :

first order rate constant for coalescence (s-1)

k 1 :

coalescence constant

k 2 :

empirical constant

L :

distance from needle to interface (cm)

M :

geometric mean rest-time (s)

N :

number of droplets not coalesced

n :

exponent

R :

gas constant

S :

spreading coefficient (Nm-1)

T :

absolute temperature

T1/2 :

first order half-life for coalescence (s)

t :

time (s)

t d :

drainage time (s)

t1/2 :

time required for half of droplets to coalesce (s)

tmean:

mean rest-time (s)

V :

molar volume

v :

velocity of hole formation

ΔHv :

latent heat of vaporization

δ :

solubility parameter

γ:

interfacial tension (Nm-1)

γ0 :

interfacial tension between pure oil and water

η e :

viscosity of continuous phase

ϱ:

density

Δϱ:

density difference

σ :

surface tension

ag:

geometric standard deviation

T :

surface excess

T 0 :

saturation adsorption

References

  1. Becher, P., Emulsions-Theory and Practice, 2nd Edn. (New York 1965).

  2. Sherman, P., Emulsion Science, p. 131 (London 1968).

  3. Toms, B. A., J. Chem. Soc. 542 (1941).

  4. Martin, A. R. andR. N. Hermann, Trans. Faraday Soc.37, 25 (1941).

    Google Scholar 

  5. Shotton, E. andR. F. White, J. Pharm. Pharmacol.12, Suppl. 108 T (1960).

  6. Shotton, E. andR. F. White, Rheology of Emulsions, p. 59 (Oxford 1963).

  7. El-Shimi, A. F. andV. N. Izmailova, Abh. Dtsch. Akad. Wiss. Berlin. (Chem. Geol. Biol.)6, 868 (1966).

    Google Scholar 

  8. Hallworth, G. W. andJ. E. Carless, J. Pharm. Pharmacol.24, Suppl. 71 P (1972).

  9. Davis, S. S. andA. Smith (1974).

  10. Jeffreys, G. V. andG. A. Davies, Recent Advances in liquid-liquid Extraction, p. 495 (Oxford, 1971).

  11. Ishida, S., T. Sonada andT. Yoshida, Yukagaku17, 562 (1968).

    Google Scholar 

  12. Cockbain, E. G. andT. S. McRoberts, J. Colloid Sci.8, 440 (1953).

    Google Scholar 

  13. Nielsen, L. E., R. Wall andG. Adams, J. Colloid Sci.13, 441 (1958).

    Google Scholar 

  14. Woods, D. R. andK. A. Burrill, J. Electroanal. Chem.37, 191 (1972).

    Google Scholar 

  15. Biswas, B. andD. A. Haydon, Kolloid-Z. u. Z. Polymere185, 31 (1962).

    Google Scholar 

  16. Glass, J. E., R. D. Lundberg andF. E. Bailey, J. Colloid Interface Sci.33, 491 (1970).

    Google Scholar 

  17. Tingstad, J. E., J. Pharm. Sci.53, 995 (1964).

    Google Scholar 

  18. Burrill, K. A. andD. R. Woods, J. Colloid Interface Sci.30, 511 (1969).

    Google Scholar 

  19. Burrill, K. A. andD. R. Woods, J. Colloid Interface Sci.42, 35 (1973).

    Google Scholar 

  20. Riddick, J. A. andW. B. Bunger, Organic Solvents, Techniques of Chemistry (New York 1970).

  21. Davis, S. S. andA. Smith, Kolloid-Z. u. Z. Polymere251, 337 (1973).

    Google Scholar 

  22. Johnson, M. C. R. andL. Saunders, J. Pharm. Pharmac.23, 89S (1971).

    Google Scholar 

  23. Rehfeld, S. J., J. Phys. Chem.71, 738 (1967).

    Google Scholar 

  24. Weiner, N. D., H. C. Parreira andG. Zografi, J. Pharm. Sci.55, 187 (1966).

    Google Scholar 

  25. Jefreys, G. V. andJ. L. Hawskley, J. Appl. Chem.12, 329 (1962).

    Google Scholar 

  26. Hawksley, G. L., Thesis, University of Birmingham (1963).

  27. Hodgson, T. D. andD. R. Woods, J. Colloid Interface Sci.30, 429 (1969).

    Google Scholar 

  28. Hodgson, T. D. andJ. C. Lee, J. Colloid Interface Sci.30, 94 (1969).

    Google Scholar 

  29. Charles, G. E. andS. G. Mason, J. Colloid Sci.15, 236 (1960).

    Google Scholar 

  30. Elton, G. A. H. andR. G. Picknett, Proc. 2nd Int. Congress on Surface Activity1, 288 (London, 1957).

    Google Scholar 

  31. Vatanabe, T. andM. Kusui, Bull. Chem. Soc. Japan31, 236 (1958).

    Google Scholar 

  32. Gillespie, T. andE. K. Rideal, Trans. Faraday Soc.52, 173 (1956).

    Google Scholar 

  33. Jeffreys, G. V. andJ. L. Hawksley, Amer. Inst. Chem. Eng. J.11, 413 (1965).

    Google Scholar 

  34. Gillap, W. R., N. D. Veiner andM. Gibaldi, J. Phys. Chem.72, 2222 (1968).

    Google Scholar 

  35. Hutchinson, E. J., Colloid Sci.3, 235 (1948).

    Google Scholar 

  36. Gillap, W. R., N. D. Veiner andM. Gibaldi, J. Colloid Interface Sci.26, 232 (1968).

    Google Scholar 

  37. Van Voorst Vader, F., Trans. Faraday Soc.56, 1067 (1960).

    Google Scholar 

  38. Hildebrand, J. H. andR. L. Scott, Regular Solutions (Englewood Cliffs, New Jersey, 1962).

    Google Scholar 

  39. Hoy, K. L., J. Paint. Technol.42, 76 (1970).

    Google Scholar 

  40. Salem, L., Can. J. Biochem. Physiol.40, 1287 (1962).

    Google Scholar 

  41. Vilallonga, F. A. andE. R. Garrett, J. Pharm. Sci.62, 1605 (1973).

    Google Scholar 

  42. Anderson, R., R. Cambio andJ. M. Prausnitz, Amer. Inst. Chem. Eng. J.8, 66 (1962).

    Google Scholar 

  43. Davis, S. S., Activity Coefficient Data, University of Kansas (1970) unpublished compilation.

  44. Griffin, W. C., J. Soc. Cosmet. Chem.5, 249 (1954).

    Google Scholar 

  45. Riegelman, S. andG. Pichon, Am. Perfumer77, (2) 31 (1962).

    Google Scholar 

  46. Ohba, N., Bull. Chem. Soc. Japan35, 1021 (1962).

    Google Scholar 

  47. Gorman, W. G. andG. D. Hall, J. Pharm. Sci.50, 708 (1963).

    Google Scholar 

  48. Lo, I., T. Legras, M. Seiller, M. Choix andF. Puiscaux, Ann. Pharm. Fr.30, 211 (1972).

    Google Scholar 

  49. Ross, S., E. S. Chen, P. Becher andH. J. Ranauto, J. Phys. Chem.63, 1681 (1959).

    Google Scholar 

  50. Becher, P., J. Soc. Cosmet. Chem.11, 325 (1960).

    Google Scholar 

  51. Carless, J. E. andG. W. Hallworth, J.. Colloid Interface Sci.26, 75 (1968).

    Google Scholar 

  52. Hallworth, G. W. andJ. E. Carless, J. Pharm. Pharmac.25, Suppl. 87p (1973).

  53. Marsden, J. andJ. H. Schulman, Trans. Faraday Soc.34, 748 (1938).

    Google Scholar 

  54. Princen, H. M., J. Colloid Sci.18, 178 (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, S.S., Smith, A. The stability of hydrocarbon oil droplets at the surfactant/oil interface. Colloid & Polymer Sci 254, 82–98 (1976). https://doi.org/10.1007/BF01526744

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01526744

Keywords

Navigation