Skip to main content
Log in

High shear viscometry of concentrated solutions of poly (alkylmethacrylate) in a petroleum lubricating oil

  • Published:
Rheologica Acta Aims and scope Submit manuscript

Summary

High shear capillary viscometry at 37.8°C (100°F) of concentrated solutions of a series of polyalkylmethacrylate viscosity index improvers in a petroleum lubricating oil is reported. Viscosity average molecular weights of the four polymers varied from 355 000–1650 000 and solution concentrations varied from 2–20 wt.-%. An approximating function based on the error function was computerfit to the complete flow curves by correlating the distribution of apparent viscosity with the product (\(\dot \gamma \)τ), the rate of viscous energy dissipation. This gave an estimate of the secondNewtonian viscosity (η ) and two parameters of the approximating function. The fourth quantity required to completely define the flow curve is the low shear or firstNewtonian viscosity (η 0 ). Representation of the original data was within 2%, by this technique.

The parameters of the flow function — the energy level at the inflection point and the slope of the transformed flow function — were found to vary in a regular manner with both molecular weight of the polymer and polymer concentration, expressed as relative viscosity (η rel). The limiting asymptotes of the approximating function —η 0 andη — could not be treated according to the conventionalHuggins equation, but they were fit adequately by theMartin equation: log(η sp/C)=log[η]+K[η]C. The intrinsic viscosities thus determined for both low shear ([η M ]0) and high shear ([η M ]0) demonstrate aMark-Houwink relationship, i.e., [η M ]0=5.668×10−5 M 0.660 v and [η M ]=2.574×10−5 M 0.0669 v so that ([η M ]≈[η M ]0/2) over the range studied. The relationship of these results to other reports of high shear viscometry of polymer solutions is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

η :

Apparent viscosity at experimental conditions, centipoise

[η M ]:

Intrinsic viscosity via extrapolation ofMartin equation, dl/g

\(\dot \gamma \) :

Shear rate, sec−1

τ :

Stress level, dynes/cm2

Ê:

Energy level at inflection point (\(\dot \gamma \)τ), dynes/cm2 sec

0:

Limiting low shear rate (1stNewtonian) condition.

∞:

Limiting high shear rate (2ndNewtonian) condition

s :

Refers to solvent

References

  1. Hodgson, J. W., A.S.L.E. Trans.14, 318 (1971).

    Google Scholar 

  2. Wada, S. andH. Hayashi, Bull. Japan Soc. Mech. Eng.14, 279 (1971).

    Google Scholar 

  3. Appeldoorn, J. K. andW. Philippoff, Amer. Chem. Soc. Preprints, Div. Petr. Chem., Atl. City, Sept. (1962).

  4. Tager, A. A. andV. E. Dreval, Rheol. Acta9, 517 (1970).

    Google Scholar 

  5. Johnson, R. H. andW. A. Wright, Soc. Auto. Eng. Paper n° 680072, S.A.E. Annual Meeting, Detroit, Mich. (1968).

  6. Wright, W. A. andR. H. Johnson, Soc. Auto. Eng. Paper n°680437, S.A.E. Mid-Year Meeting, Detroit, Mich. (1968).

    Google Scholar 

  7. Novak, J. D., Ph. D. Thesis, Univ. of Michigan (1968).

  8. Horowitz, H. H., Ind. Eng. Chem.80, 1089 (1958).

    Google Scholar 

  9. Ram, A. andA. Siegman, J. Appl. Poly. Sci.12, 59 (1968).

    Google Scholar 

  10. Van Nes, K. andH. Van Weston, Aspects of the Constitution of Mineral Oils (New York, 1951).

  11. Cramer, S. D., Ph. D. Thesis, Univ. of Maryland (1968).

  12. Umstatter, H., Proc. Second Int'l. Congr. Rheol., Pt. 5 (New York 1954).

  13. Kirschke, K., Rheol. Acta2, 147 (1962).

    Google Scholar 

  14. Rodriguez, F. andL. A. Goettler, Trans. Soc. Rheol.8, 3 (1964).

    Google Scholar 

  15. Rodriguez, F., Trans. Soc. Rheol.10, 169 (1966).

    Google Scholar 

  16. Wright, W. A. andW. W. Crouse, A.S.L.E. Trans.8, 184 (1965).

    Google Scholar 

  17. Huggins, M. L., J. Amer. Chem. Soc.64, 2716 (1942).

    Google Scholar 

  18. Martin, A. F., Amer. Chem. Soc. Abstracts, Div. Cellulose Chem., Memphis, April (1942).

  19. Discussed byM. L. Huggins, in: Cellulose and Cellulose Derivatives — High Polymers, Vol. 5 (New York 1943).

  20. Spurlin, H. M., A. F. Martin, andH. G. Tennent, J. Poly. Sci.1, 63 (1946).

    Google Scholar 

  21. Sakai, T., J. Poly. Sci. A2,6, 1659 (1968).

    Google Scholar 

  22. Hirose, M., E. O'Shima, andH. Inoue, J. Appl. Poly. Sci.12, 9 (1968).

    Google Scholar 

  23. Sell, J. W. andW. C. Forsman, Macromolecules5, 23 (1972).

    Google Scholar 

  24. Sikri, A. P., Ph. D. Thesis, Univ. of Pennsylvania (1971).

  25. Stratton, R. A., Macromolecules5, 304 (1972).

    Google Scholar 

  26. Gandhi, K. S. andM. C. Williams, J. Poly. Sci.-Pt. C35, 211 (1971).

    Google Scholar 

  27. Brodnyan, J. G., F. H. Gaskins, andW. Philippoff, Trans. Soc. Rheol.1, 109 (1957).

    Google Scholar 

  28. Philippoff, W., F. H. Gaskins, andJ. G. Brodnyan, J. Appl. Phys.28, 1118 (1957).

    Google Scholar 

  29. Merrill, E. W., H. S. Mickley, A. Ram, andG. Perkinson, Trans. Soc. Rheol.5, 237 (1961).

    Google Scholar 

  30. Merrill, E. W., A. Ram, H. S. Mickley, andW. H. Stockmayer, J. Poly. Sci.-Pt. A1, 1201 (1963).

    Google Scholar 

  31. Ram, A., in: Rheology. Ed.F. R. Eirich, Vol. IV Ch. 3 (New York 1967).

  32. Documenta Geigy-Scientific Tables. Ed.K. Diem, 6th Edition (New York 1962).

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 11 figures and 3 tables

Rights and permissions

Reprints and permissions

About this article

Cite this article

Talbot, A.F. High shear viscometry of concentrated solutions of poly (alkylmethacrylate) in a petroleum lubricating oil. Rheol Acta 13, 305–317 (1974). https://doi.org/10.1007/BF01520893

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01520893

Keywords

Navigation