Skip to main content
Log in

The coalescence of mercury droplets in aqueous solutions in the presence of surface active materials

  • Originalarbeiten
  • Kolloide und Natürliche Makromoleküle
  • Published:
Kolloid-Zeitschrift und Zeitschrift für Polymere Aims and scope Submit manuscript

Summary

The range of the electrical potential of coalescence of mercury droplets in solutions of surface active materials was measured by using the twin dropping mercury electrodes, developed by the present authors. It was thus hoped that the rôle of surface active materials in stabilizing emulsions in general was clarified by the present study. Experiments were carried out by using sodium dodecylsulphate, cetylpyridinium chloride, a polyvinyl alcohol and EPANs, a group of nonionic surface active copolymers of ethylene oxide and propylene oxide at various mole ratios, as the surface active materials. All these substances showed perfect protection; mercury droplets did not coalesce at any potential of mercury surfaces, when the concentration of these substances exceeded certain values characteristic of these materials. Moreover, in the case of EPANs, the logarithm of this concentration was found to be a linear decreasing function of the HLB value of the molecule; the stabilizing power increased with increasing hydrophilic character of the molecule. The adsorption behaviour of various EPANs on to the mercury surface was also studied by measuring differential double layer capacities. It was found that the stabilization was intimately related to the formation of films of the surface active materials at the mercury-solution interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Watanabe, A. and R. Gotoh, Kolloid-Z. u. Z. Polymere 191, 36 (1963).

    Article  CAS  Google Scholar 

  2. Mysels, K. J., Introduction to Colloid Chemistry, p. 86 (New York 1959).

  3. Becher, P., Emulsions, p. 138 (New York 1957).

  4. Cockbain, E. G. and T. S. McRoberts,, J. Colloid Sci. 8, 440 (1953).

    Article  CAS  Google Scholar 

  5. Gillespie, T. and E. K. Rideal, Trans. Faraday Soc. 52, 173 (1956).

    Article  CAS  Google Scholar 

  6. Nielsen, L. E., R. Wall and O. Adams, J. Colloid Sci. 13, 441 (1958).

    Article  CAS  Google Scholar 

  7. Charles, G. E. and S. G. Mason, J. Colloid Sci. 15, 105 (1960).

    Article  CAS  Google Scholar 

  8. Albers, W. and J. Th. G. Overbeek, J. Colloid Sci. 14, 501 (1959).

    Article  CAS  Google Scholar 

  9. Sata, N., Y. Harisaki and H. Sasaki, Kolloid-Z. u. Z. Polymere 196, 53 (1964).

    Article  CAS  Google Scholar 

  10. Watanabe, A., F. Tsuji and S. Ueda, J. Electrochem. Soc. (Japan) 29, 701 (1961).

    CAS  Google Scholar 

  11. Grahams, D. C., J. Amer. Chem. Soc. 63, 1207 (1941); 68, 301 (1946).

    Article  Google Scholar 

  12. Watanabe, A., F. Tsuji and S. Ueda, Kolloid-Z. u. Z. Polymere 191, 147 (1963).

    Article  CAS  Google Scholar 

  13. Watanabe, A., F. Tsuji, and S. Ueda, Proc. 2nd Intern. Congr. Surface Activity, London, 3, 94 (1957).

    CAS  Google Scholar 

  14. Frumkin, A., Z. Physik 35, 792 (1926); Ergebn. 7, 235 (1928).

    Article  CAS  Google Scholar 

  15. Grahame, D. C., Chem. Revs. 41, 441 (1947).

    Article  CAS  Google Scholar 

  16. Proskurnin, M. and A. Frumkin, Trans. Faraday Soc. 31, 110 (1935).

    Article  CAS  Google Scholar 

  17. Parsons, R. and M. A. V. Devanathan, Trans. Faraday Soc. 49, 404 (1953).

    Article  CAS  Google Scholar 

  18. Melik-Gaikazjan, V. I., Zhur. fiz. Khim. 26, 560 (1952).

    Google Scholar 

  19. Breyer, B. and S. Hacobian, Australian J. Chem. 9, 7 (1956).

    Article  CAS  Google Scholar 

  20. Watanabe, A., F. Tsuji and S. Ueda, Kolloid-Z. u. Z. Polymere 193, 39 (1963).

    Article  CAS  Google Scholar 

  21. Ueda, S., A. Watanabe and F. Tsuji, J. Electrochem. Soc. (Japan) 30, 657 (1962); 31, 32 (1963).

    Google Scholar 

  22. Watanabe, A., F. Tsuji and S. Ueda, Kolloid-Z. u. Z. Polymere, 198, 87 (1964).

    Article  CAS  Google Scholar 

  23. Lorenz, W. and F. Möckel, Z. Elektrochem. 60, 507 (1956).

    CAS  Google Scholar 

  24. Berzins, T. and P. Delahay, J. physic. Chem. 59, 906 (1955).

    Article  CAS  Google Scholar 

  25. Senda, M. and I. Tachi, Rev. Polarography 10, 79 (1962).

    Article  CAS  Google Scholar 

  26. Ueda, S., A. Watanabe and F. Tsuji, J. Electrochem. Soc. (Japan) 30, 582 (1962).

    Google Scholar 

  27. Albers, W. and J. Th. G. Overbeek, J. Colloid Sci. 14, 501, 510 (1959); 15, 480 (1960).

    Article  CAS  Google Scholar 

  28. Verwey, E. J. W. and J. Th. G. Overbeek, “Theory of the Stability of Lyophobic Colloids”, p. 169 (Amsterdam 1948).

  29. Davies, J. T., Proc. 2nd Intern. Congr. Surface Activity, London I, 426 (1957).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, A., Matsumoto, M. & Gotoh, R. The coalescence of mercury droplets in aqueous solutions in the presence of surface active materials. Kolloid-Z.u.Z.Polymere 201, 147–154 (1965). https://doi.org/10.1007/BF01520499

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01520499

Keywords

Navigation