Skip to main content
Log in

The site model theory and the standard linear solid

  • Original Contributions · Originalarbeiten
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Summary

The site model theory (SMT) is shown to lead to the same deformation behaviour as that displayed by the standard linear solid (SLS), group I, for all loading conditions. If a second deformation mechanism (inter-molecular slip) is introduced the result is the same as that obtained with the standard linear solid, group II, and models the behaviour of a polymer melt near to the solidification temperature.

Zusammenfassung

Es wird gezeigt, daß ein einfaches Platzwechsel-Modell (site model theory) bei allen Belastungsbedingungen das gleiche Deformationsverhalten voraussagt wie der lineare Drei-Parameter-Festkörper (standard linear solid, group I). Wenn ein weiterer Deformationsmechanismus (zwischenmolekulare Gleitung) eingeführt wird, entspricht das Verhalten dagegen demjenigen einer linearen Drei-Parameter-Flüssigkeit (standard linear solid, group II), welche das Verhalten einer Polymerschmelze in der Nähe der Schmelztemperatur beschreibt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

=ω 012 +ω 021 , see eq. [1]

b :

=N 01 ω 012 (V 12 +V 21), see eq. [1]

c :

= 2N s ω 0 V s see eq. [6]

k :

Boltzmann constant

t :

time

E,E 1,E 2 :

spring constants, see figures 1 and 3

E u :

unrelaxed modulus

N 01 :

site 1 equilibrium population in the unstressed state

N s :

number of units available for slip

ΔN(t):

decrease in site 1 population

ΔN s (t):

net number of slip jumps in the stressaided direction

T :

temperature (K)

V i,j :

activation volume for jumps in directioni → j

V s :

activation volume for the slip process

ε :

strain

\(\dot \varepsilon \) :

strain rate

Δε :

incremental change in strain per unit change in site population

µ,µ 1,µ 2 :

dashpot constants, see figures 1 and 3

σ :

applied stress

σ 0 :

initial applied stress, (stress relaxation) =σ(t) (creep)

Δσ :

incremental change in stress per unit change in site population

ω 0 :

jump rate for slip in the unstressed state

ω 0 i,j :

jump rate in the directioni → j in the unstressed state

References

  1. Zener, C., Elasticity and Anelasticity of Metals. Univ. of Chicago Press (Chicago 1948).

    Google Scholar 

  2. Ward, I. M., Mechanical Properties of Solid Polymers. Wiley (London 1971).

    Google Scholar 

  3. Arridge, R. G. C., Mechanics of Polymers. Clarendon (Oxford 1975).

    Google Scholar 

  4. Kocks, U. F., Argon, A. S., and Ashbee, M. F., “Thermodynamics and Kinetics of Slip”, in: B. Chalmers, J. W. Christian, and T. B. Massalski (eds.), Prog. Mater. Sci.19, Pergamon (Oxford 1975).

    Google Scholar 

  5. Krausz, A. S. and Eyring, H., Deformation Kinetics. Wiley-Intersci. (New York 1975).

    Google Scholar 

  6. Argon, A. S., Phil. Mag.28, 839 (1973).

    Google Scholar 

  7. Escaig, B., Ann. Phys.3, 207 (1978).

    Google Scholar 

  8. Kubát, J., Rigdahl, M., and Seldén, R., J. Appl. Polym. Sci.20, 2799 (1976).

    Google Scholar 

  9. Pink, E., Rev. Deform. Behav. Mater.2, 37 (1977).

    Google Scholar 

  10. White, J. R., Submitted for publication.

  11. White, J. R., Mater Sci. Eng.45, 35 (1980).

    Google Scholar 

  12. White, J. R., Submitted for publication.

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 3 figures and 3 tables

Rights and permissions

Reprints and permissions

About this article

Cite this article

White, J.R. The site model theory and the standard linear solid. Rheol Acta 20, 23–28 (1981). https://doi.org/10.1007/BF01517469

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01517469

Key words

Navigation