Skip to main content
Log in

Morphometrische Karyotypanalyse Einiger Schalangen-Arten

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The karyotypes of all the 8 snake species occurring in Switzerland are described using quantitative characteristics, namely (1) relative length of the chromosomes expressed as per cent of the sum of the length of all the macro-chromosomes, (2) location of the centromere as defined by the armindex, i.e., length of the short arm divided by length of the long arm×100. Measurements were taken from 10–20 mitotic plates of every specimen. Per species, 1–4 specimens were analysed.

The data are represented in two-dimensional ideograms showing mean, standard error and standard deviation. By comparing the ideograms, karyotype differences between species are readily recognised. Furthermore, the method permits the identification and description of differences arising from pericentric inversions and interchromosomal translocations. The accurate identification of individual chromosomes also provides a basis for speculation on the possible homology between them.

A comparison of previous descriptions of chromosomes in snakes, confirms a basic karyotype of 2n=16 well defined macro-chromosomes. This basic type is common to several families. However, the three Swiss species ofNatrix have chromosomes that differ widely in size and proportions from the basic karyotype. These differences are presumed to be the result of complex rearrangements between several chromosomes.Vipera aspis has an increased chromosome number and several chromosomes show divergent morphology. It is assumed, that this karyotype has originated by centric fragmentations and pericentric inversions from the basic karyotype. Four autosomes and the sex chromosomes ofVipera aspis are morphologically identical with the corresponding elements ofVipera berus which has the basic karyotype. Homologies have therefore been suggested for the otheraspis chromosomes with those ofberus.

The merits and limitations of this method of karyotype analysis are discussed.

It has been shown cytologically that in several snake genera the female is the heterogametic sex. However, hydrolysed nuclei of erythrocytes and other interphase nuclei often contain a dark staining body not unlike the sex chromatin of mammals. It is difficult to decide whether this is in any way related do dosage compensation, since mammals show the reverse condition. Male snakes (homogametic) never showed this type of chromocentre

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Ashley, D. J. B. &E. A. Theiss (1959). Nuclear sex in species showing male homogamety.Anat. Rec. 135: 115–120.

    PubMed  Google Scholar 

  • Bajer, A. (1959). Change of length and volume of mitotic Chromosomes in living cells.Hereditas 45: 579–596.

    Google Scholar 

  • Beçak, W., M. L. Beçak &H. R. S. Nazareth (1962). Karyotyp studies of two species of South American snakes (Boa constrictor amarali andBothrops jararaca).Cytogenetics 1: 305–313.

    PubMed  Google Scholar 

  • Beçak, W., M. L. Beçak, H. R. S. Nazareth &S. Ohno (1964). Close karyological kinship between the Reptilian SuborderSerpentes and the ClassAves.Chromosoma (Berl.)15: 606–617.

    Google Scholar 

  • Beçak, M. L., W. Beçak &H. N. Rabello (1966). Cytological evidence of constant tetraploidy in the bisexual South American frogOdontophrynus americanus.Chromosoma (Berl.)19: 188–193.

    Google Scholar 

  • Beckert, W. H. (1962). Sex chromatin in non-mammalian vertebrates.Amer. Zool. 2: 505–506.

    Google Scholar 

  • Bhatnagar, A. N. (1959). Studies on the Structure and Behaviour of Chromosomes ofOligodon aenensis Shaw (Colubridae, Ophidia).Cytologia (Tokyo)24: 459–465.

    Google Scholar 

  • Bhatnagar, A. N. (1960). Studies on the structure and behaviour of chromosomes of two species of Colubrid snakes.Caryologia 12: 349–367.

    Google Scholar 

  • Brink, J. M. van (1959). L'expression morphologique de la digametie chez les sauropsides et les monotrèmes.Chromosoma (Berl.)10: 1–72.

    Google Scholar 

  • Cock, A. G. (1963). Dosage compensation and sex-chromatin in non-mammals.Genet. Res. Camb. 5: 354–365.

    Google Scholar 

  • Fredga, K. &B. Santesson (1964). Male meiosis in the Syrian, Chinese, and European Hamsters.Hereditas 52: 36–47.

    Google Scholar 

  • Galton, H. &S. F. Holt (1964). DNA replication pattern of the sex chromosomes in somatic cells of the Syrian Hamster.Cytogenetics 3: 97–111.

    Google Scholar 

  • Hamerton, J. L. (1957). Problems in mammalian Cytotaxonomy.Proc. Linn. Soc. Lond. 169: 112–125.

    Google Scholar 

  • Hartmann, H. (1956). Die Sexualität. G. Fischer Verlag, Stuttgart.

    Google Scholar 

  • Hughes-Schrader, S. &F. Schrader (1956). Polyteny as a factor in the chromosomal evolution of thePentatomini (Hemiptera).Chromosoma (Berl.)8: 135–151.

    Google Scholar 

  • Humphrey, R. R. & G. Fankhauser (1950). Chromosome number and development of progeny of triploid axolotl ♀♀ mated with diploid ♂♂.J. Exp. Zool. 115:

  • John, B., &G. M. Hewitt (1965). The B-chromosome system ofMyrmeleotettix maculatus (Trunb.).Chromosoma (Berl.)16: 548–578.

    Google Scholar 

  • John, B. &G. M. Hewitt (1966). A polymorphism for heterochromatic supernumerary segments inChorthippus parallelus.Chromosoma (Berl.)18: 254–271.

    Google Scholar 

  • Ishizaki, H. &J. L. Kosin (1960). Sex chromatin in early chick embryos.Exp. Cell. Res. 21: 197–200.

    PubMed  Google Scholar 

  • Keyl, H. G. (1959, 1960, 1961). Die cytologische Diagnostik der Chironomiden I–III.Arch. Hydrobiol. 56: 43,57: 187,58: 1.

    Google Scholar 

  • Kobel, H. R. (1962). Heterochromosomen beiVipera berus L. (Viperidae, Serpentes).Experentia 18: 173–174.

    Google Scholar 

  • Kobel, H. R. (1963). Vergleich der Chromosomensätze vonVipera berus L. undVipera aspis L. (Viperidae, Serpentes).Arch. Julius Klaus Stift. 38: 68–75.

    Google Scholar 

  • Kosin, J. L. &A. Ishizaki (1959). Incidence of sex chromatin inGallus do-mesticus.Science 130: 43–44.

    PubMed  Google Scholar 

  • Kramer, E. (1958). Eine neue Rasse der Aspisviper aus dem südwestlichen Frankreich,Vipera aspis zinnikeri.Viertelsjahresschrift Nat. Forsch. Gesellschaft Zürich 103: 323.

    Google Scholar 

  • Levan, A., W. W. Nichols, M. Peluse &L. L. Coriell (1966). The stemline chromosomes of three cell lines representing different Vertebrate classes.Chromosoma (Berl.).18: 343–358.

    Google Scholar 

  • Lima-de-Faria, H. (1956). The role of the kinetochore in chromosome organization.Hereditas 42: 85–160.

    Google Scholar 

  • Makino, S. &E. Momma (1949). An idiogram study of the chromosomes in some species of reptiles.Cytologia 15: 96–108.

    Google Scholar 

  • Marks, G. E. (1957). Telocentric chromosomes.Amer. Naturalist 91: 223–232.

    Google Scholar 

  • Martin, P. G. &D. L. Hayman (1966). A complex sex-chromosom system in the Hare-WallabyLagorchestes conspicillatus Gould.Chromosoma (Berl.)19: 159–175.

    Google Scholar 

  • Matthey, R. (1931). Chromosomes de Reptiles.Rev. Suisse Zool. 38: 117.

    Google Scholar 

  • Matthey, R. (1949). Les Chromosomes des Vertébrés. Lausanne: Rouge.

    Google Scholar 

  • Matthey, R. (1955). Un typesnouveau de chromosomes sexuels multiples chez une souris africaine du groupeMus (Leggada) minutoides (Mammalia-Rodentia).Chromosoma (Berl.)16: 351–364.

    Google Scholar 

  • Matthey, R. (1966). Une inversion péricentrique à l'origine d'un polymorphisme chromosomique non-Robertsonien dans une population deMastomys (Rodentia-Murinae).Chromosoma (Berl.)18: 188–200.

    Google Scholar 

  • Mazia, D. (1961). Mitosis and the physiologie of Cell Division. The Cell (I. Brachet, ed.) Vol. III p. 197. New York Acad. Press.

  • Miles, C. P. &S. D. Strong (1962). Nuclear chromocenters of cultured chicken cells.Exp. Cell Res. 27: 377–381.

    Google Scholar 

  • Moore, K. L. &J. C. Hay (1961). Sexual dimorphism of intermitotic nuclei of birds.Anat. Rec. 139: 315.

    Google Scholar 

  • Moses, M. J. &G. Yerganian (1952). DNA content and cytotaxonomy of severalCricetinae (Abstract).Genetics 37: 607–608.

    Google Scholar 

  • Muller, H. J. &W. D. Kaplan (1966). The dosage compensation ofDrosophila and mammals as showing the accuracy of the normal type.Genet. Res. 8: 41–59.

    PubMed  Google Scholar 

  • Nakamura, K. (1935). Studies on Reptilian chromosomes. VI. Chromosomes of some snakes.Mem. Coll. Sci. Kyoto Ser. B,10: 361–402.

    Google Scholar 

  • Newcomer, E. H. (1963). The karyotype of the Domestic Fowl.Proc. XI. International Congres of Genetics. Genetics Today, I: 103–104. Pergamon Press.

    Google Scholar 

  • Nur, U. (1963). A mitotically unstable supernumerary chromosome with an accumulation mechanism in a Grasshopper.Chromosoma (Berl.)14: 417–422

    Google Scholar 

  • Ohno, S., W. D. Kaplan &R. D. Kinosita (1960). On the sex-chromatin ofGallus domesticus.Exp. Cell. Res. 19: 180–183.

    PubMed  Google Scholar 

  • Ohno, S., Ch.Stenius, L. C. Christian, W. Beçak, &M. L. Beçak, (1964a). Chromosomal uniformity in the avian subclassCarinatae.Chromosoma (Berl.)15: 280–288.

    Google Scholar 

  • Ohno, S., W. Beçak &M. L. Beçak (1964). X-autosome ratio and the behaviour pattern of individual X-chromosomes in placental mammals.Chromosoma (Berl.)15: 14–30.

    Google Scholar 

  • Patterson, J. T. &W. W. Stone (1952). Evolution in the genus Drosophila. Macmillan. New York.

    Google Scholar 

  • Pennock, L. A. (1965). Triploidy in parthenogenetic species of the teiid lizard genusCnemidophorus.Science 149: 539–540.

    PubMed  Google Scholar 

  • Radley, J. M. (1966). DNA content of individual chromosomes ofProtemnodon bicolor.Exp. Cell. Res. 41: 217–220.

    PubMed  Google Scholar 

  • Renzoni, A. &M. Vegni-Talluri (1966), The karyograms of someFalconiformes andStrigiformes.. Chromosoma (Berl.).20: 133–150.

    Google Scholar 

  • Russel, L. B. (1964). Another look at the single-active-x hypothesis.Transactions New York Acad. Sciences Ser. II. Vol. 26, No.6: 726–736.

    Google Scholar 

  • Sachs, L. (1952). Polyploid evolution and mammalian chromosomes.Heredity 6: 357–364.

    Google Scholar 

  • Schmid, W. (1962). DNA replication patterns of the hetero — chromosomes inGallus domesticus.Cytogenetics 1: 344–352.

    PubMed  Google Scholar 

  • Schmid, W., D. W. Smith &K. Theiler (1965). Chromatinmuster in verschiedenen Zelltypen und Lokalisation von Heterochromatin auf Metaphasechromosomen beiMicrotus agrestis, Mesocricetus auratus, Cavia cobaya und beim Menschen.Arch. Julius Klaus Stift. 40: 35–49.

    Google Scholar 

  • Stone, W. S. (1962). The dominance of natural selection and the reality of superspecies (species groups) in the Evolution ofDrosophila.Univ. Texas Publ. 6205: 507–537.

    Google Scholar 

  • Ullerich, F. H. (1966). Karyotyp und DNS-Gehalt vonBufo bufo, B. viridis, B. bufo×B. viridis undB. calamita (Amphibia, Anura).Chromosoma (Berl.)18: 316–342.

    Google Scholar 

  • Wasserman, M. (1963). Cytologie and phylogeny ofDrosophila.Amer. Naturalist 97: 333–352.

    Google Scholar 

  • Weiler, C. &S. Ohno (1962). Cytological confirmation of female heterogamety in the African water frog (Xenopus laevis).Cytogenetics 1: 217–223.

    PubMed  Google Scholar 

  • Werner, Y. L. (1959). Chromosomes of primitive snakes from Israel.Bull. Res. Counc. of Israel 8 B: 197–198.

    Google Scholar 

  • White, M. J. D. (1951). Cytogenetics of Orthopteroid Insects.Advanc. Genet. 4: 267–330.

    Google Scholar 

  • Wolf, U. &D. Hepp (1966). DNS-Reduplikationsmuster der somatischen Chromosomen vonCricetus cricetus (L).Chromosoma (Berl.)18: 438–448.

    Google Scholar 

  • Yosida, T. H. (1957). Sex-chromosomes of the tree frogHyla arborea japonica.J. Fac. Sci. (Ser. 6)Hokkaido Univ. 13: 352–358.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobel, H.R. Morphometrische Karyotypanalyse Einiger Schalangen-Arten. Genetica 38, 1–31 (1967). https://doi.org/10.1007/BF01507444

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01507444

Navigation