Skip to main content
Log in

Postnatal development of vimentin-immunoreactive radial glial cells in the primary visual cortex of the cat

  • Published:
Journal of Neurocytology

Summary

In kitten area 17 vimentin-like immunoreactivity is expressed in radial glial fibres up to one month postnatally, i.e. the time for which neuronal migration continues. During this time fibre density gradually decreases. A subpopulation of these fibres also contains S-100 protein and glial fibrillary acidic protein. However, these latter antigens disappear earlier than vimentin. In addition, vimentin immunoreactivity can be observed in astroglial cells of the white matter between the second and fifth postnatal week. Many of these cells resemble mature astrocytes but partially they have an intermediate morphology suggesting the possibility that they originated from radial glia. Such ‘displaced radial glial cells’ are also positive for S-100 protein both in the cortex and white matter. Thus it is conceivable that at least part of the astrocytes of mature cat visual cortex originate from vimentin- or S-100-immunoreactive radial glia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ALVAREZ-BUYLLA, A., BUSKIRK, D. R. & NOTTEBOHM, F. (1987) Monoclonal antibody reveals radial glia in adult avian brain.Journal of Comparative Neurology 264, 159–70.

    Google Scholar 

  • BIGNAMI, A. & DAHL, D. (1974) Astrocyte-specific protein and radial glia in the cerebral cortex of newborn rat.Nature 252, 55–6.

    Google Scholar 

  • BIGNAMI, A., RAJU, T. & DAHL, D. (1982) Localization of vimentin, the nonspecific intermediate filament protein, in embryonal glia and in early differentiating neurons.Developmental Biology 91, 286–95.

    Google Scholar 

  • BOYES, B. E., KIM, S. U., LEE, V. & SUNG, S. C. (1986) Immunohistochemical co-localization of S100b and the glial fibrillary acidic protein in rat brain.Neuroscience 17, 857–65.

    Google Scholar 

  • CHOI, B. H. (1981) Radial glia of developing human fetal spinal cord: Golgi, immunohistochemical and electron microscopic study.Developmental Brain Research 1, 249–67.

    Google Scholar 

  • CHOI, B. H. & LAPHAM, L. W. (1978) Radial glia in the human fetal cerebrum: a combined Golgi, immunofluorescent and electron microscopic study.Brain Research 148, 295–311.

    Google Scholar 

  • COCCHIA, D. (1981) Immunocytochemical localization of S-100 protein in the brain of adult rat. An ultrastructural study.Cell and Tissue Research 214, 529–40.

    Google Scholar 

  • DAHL, D., BJÖRKLUND, H. & BIGNAMI, A. (1986) Immunological markers in astrocytes. InAstrocytes (edited by FEDOROFF, S. & VERNADAKIS, A.), Vol. 3, pp. 1–25. New York: Academic Press.

    Google Scholar 

  • ECKENHOFF, M. F. & RAKIC, P. (1984) Radial organization of the hippocampal dentate gyrus: a Golgi, ultrastructural, and immunocytochemical analysis in the developing rhesus monkey.Journal of Comparative Neurology 223, 1–21.

    Google Scholar 

  • FEDOROFF, S. (1986) Prenatal ontogenesis of astrocytes. InAstrocytes (edited by FEDOROFF, S. & VERNADAKIS, A), Vol. 1, pp. 35–74. New York: Academic Press.

    Google Scholar 

  • GHANDOUR, M. S., LANGLEY, O. K., LABOURDETTE, G., VINCENDON, G. & GOMBOS, G. (1981) Specific and artefactual cellular localizations of S-100 protein: an astrocyte marker in rat cerebellum.Developmental Neuroscience 4, 66–78.

    Google Scholar 

  • HAJÓS, F. & GALLATZ, K. (1987) Immunocytochemical demonstration of radial glia in the developing rat olfactory bulb with antibodies to glial fibrillary acidic protein.Developmental Brain Research 36, 131–8.

    Google Scholar 

  • HOULE, J. & FEDOROFF, S. (1983) Temporal relationship between the appearance of vimentin and neural tube development.Developmental Brain Research 9, 189–95.

    Google Scholar 

  • HSU, S.-M., RAINE, L. & FANGER, H. (1981) Use of avidinbiotin-peroxidase complex (ABC) in immunoperoxidase techniques.Journal of Histochemistry and Cytochemistry 29, 577–80.

    Google Scholar 

  • LAUDER, J. & MCCARTHY, K. (1986) Neuronal—glial interactions. InAstrocytes (edited by FEDOROFF, S. & VERNADAKIS, A.), Vol. 2, pp. 295–314. New York: Academic Press.

    Google Scholar 

  • LAURIOLA, L., COLI, A., COCCHIA, D., TALLINI, G. & MICHETTI, F. (1987) Comparative study by S-100 and GFAP immunohistochemistry of glial cell populations in the early stages of human spinal cord development.Developmental Brain Research 37, 251–5.

    Google Scholar 

  • LEVITT, P. & RAKIC, P. (1980) Immunoperoxidase localization of glial fibrillary acidic protein in radial glial cells and astrocytes of the developing rhesus monkey brain.Journal of Comparative Neurology 193, 815–40.

    Google Scholar 

  • LEVITT, P., COOPER, M. L. & RAKIC, P. (1981) Coexistence of neuronal and glial precursor cells in the cerebral ventricular zone of the fetal monkey: an ultrastructural immunoperoxidase analysis.Journal of Neuroscience 1, 27–39.

    Google Scholar 

  • MAGINI, G. (1888) Sur la névroglie et les cellules nerveuses cérébrales chez les foetus.Archives Italiennes de Biologie 9, 59–60.

    Google Scholar 

  • MANTHORPE, M., RUDGE, J. S. & VARON, S. (1986) Astroglial cell contributions to neuronal survival and neuritic growth. InAstrocytes (edited by FEDOROFF, S. & VERNADAKIS, A.), Vol. 2, pp. 315–76. New York: Academic Press.

    Google Scholar 

  • MARIN-PADILLA, M. (1971) Early prenatal ontogenesis of the cerebral cortex (neocortex) of the cat (Felis domestica). A Golgi study.Zeitschrift für Anatomie und Entwicklungsgeschichte 134, 117–45.

    Google Scholar 

  • OTSUKA, R. & HASSLER, R. (1961) Über Aufbau und Gliederung der corticalen Sehsphäre bei der Katze.Archiv für Psychiatrie und Zeitschrift für die gesamte Neurologie 203, 212–34.

    Google Scholar 

  • PIXLEY, S. K. & DEVELLIS, J. (1984) Transition between immature radial glia and mature astrocytes studied with a monoclonal antibody to vimentin.Developmental Brain Research 15, 201–9.

    Google Scholar 

  • RAKIC, P. (1971a) Guidance of neurons migrating to the fetal monkey neocortex.Brain Research 33, 471–6.

    Google Scholar 

  • RAKIC, P. (1971b) Neuron-glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electron microscopic study in Macacus Rhesus.Journal of Comparative Neurology 141, 283–312.

    Google Scholar 

  • RAKIC, P. (1972) Mode of cell migration to the superficial layers of fetal monkey neocortex.Journal of Comparative Neurology 145, 61–84.

    Google Scholar 

  • RAKIC, P. (1988) Specification of cerebral cortical areas.Science 241, 170–6.

    Google Scholar 

  • RAMON Y CAJAL, S. (1909)Histologie du Système Nerveux de l'Homme et des Vertébrés. Paris: Maloine.

    Google Scholar 

  • REGAN, C. M. (1988) Neuronal and glial markers of the central nervous system.Experientia 44, 695–7.

    Google Scholar 

  • RICKMANN, M. & WOLFF, J. R. (1985) Prenatal gliogenesis in the neopallium of the rat.Advances in Anatomy, Embryology and Cell Biology 93, 1–104.

    Google Scholar 

  • RICKMANN, M., AMARAL, D. G. & COWAN, W. M. (1987) Organization of radial glial cells during the development of the rat dentate gyrus.Journal of Comparative Neurology 264, 449–79.

    Google Scholar 

  • SCHMECHEL, D. E. & RAKIC, P. (1979) A Golgi study of radial glial cells in developing monkey telencephalon: morphogenesis and transformation into astrocytes.Anatomy and Embryology 156, 115–52.

    Google Scholar 

  • SCHNITZER, J., FRANKE, W. W. & SCHACHNER, M. (1981) Immunocytochemical demonstration of vimentin in astrocytes and ependymal cells of developing and adult mouse nervous system.Journal of Cell Biology 90, 435–47.

    Google Scholar 

  • SHATZ, C. J. & LUSKIN, M. B. (1986) The relationship between the geniculocortical afferents and their cortical target cells during development of the cat's primary visual cortex.Journal of Neuroscience 6, 3655–68.

    Google Scholar 

  • SUAREZ, I., FERNANDEZ, B., BODEGA, G., TRANQUE, P., OLMOS, G. & GARCIA-SEGURA, L.-M. (1987) Postnatal development of glial fibrillary acidic protein immunoreactivity in the hamster arcuate nucleus.Developmental Brain Research 37, 89–95.

    Google Scholar 

  • SZARO, B. G. & GAINER, H. (1988) Immunocytochemical identification of non-neuronal intermediate filament proteins in the developing Xenopus laevis nervous system.Developmental Brain Research 43, 207–24.

    Google Scholar 

  • TAPSCOTT, S. J. BENNETT, G. S., TOYAMA, Y., KLEINBART, F. & HOLTZER, H. (1981) Intermediate filament proteins in the developing chick spinal cord.Developmental Biology 86, 40–54.

    Google Scholar 

  • TÖMBÖL, T. (1980) Some data on postnatal maturation of the cerebral cortex in cat.Acta Biologica Academiae Scientiarum Hungaricae 31, 341–65.

    Google Scholar 

  • VALENTINO, K. L., JONES, E. G. & KANE, S. A. (1983) Expression of GFAP immunoreactivity during development of long fibre tracts in the rat CNS.Developmental Brain Research 9, 317–36.

    Google Scholar 

  • WOODHAMS, P. L., BASCÓ, E., HAJÓS, F., CSILLÁG, A. & BALÁZS, R. (1981) Radial glia in the developing mouse cerebral cortex and hippocampus.Anatomy and Embryology 163, 331–43.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Engel, A.K., Müller, C.M. Postnatal development of vimentin-immunoreactive radial glial cells in the primary visual cortex of the cat. J Neurocytol 18, 437–450 (1989). https://doi.org/10.1007/BF01474541

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01474541

Keywords

Navigation