Skip to main content
Log in

Lösung des Dirichlet-Problems bei Jordangebieten mit analytischem Rand durch Interpolation

Solution of the Dirichlet problem by interpolation in domains bounded by analytic Jordan curves

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

LetC be an analytic Jordan curve, letG be the interior ofC, and letU (w) be (at least) continuous onC. Here the solution of the Dirichlet problemu(w) which coincides withU(w) onC is approximated by harmonic polynomials. These harmonic polynomialsF n F(w) are determined by interpolatingU(w) in a given point system. For sufficiently greatn we prove |u(w)F n (w)|≤K·logn·E n in\(\bar G\), where\(E_n = \mathop {\max }\limits_{w \in C} \left| {U(w) - h_n (w)} \right|\) andh n (w) is the harmonic polynomial of degreen of best approximation toU(w) onC andK is a constant independent ofn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Collatz, L.: Numerische Behandlung von Differentialgleichungen. 2. Auflage. Berlin-Göttingen-Heidelberg: Springer. 1955.

    Google Scholar 

  2. Curtiss, J. H.: Interpolation with harmonic and complex polynomials to boundary values. J. Math. Mech.9, 167–192 (1960).

    Google Scholar 

  3. Curtiss, J. H.: Interpolation by harmonic polynomials. J. Soc. Indust. Appl. Math.10, 709–736 (1962).

    Google Scholar 

  4. Curtiss, J. H.: Harmonic interpolation in Fejér points with the Faber polynomials as a basis. Math. Z.86, 75–92 (1964).

    Google Scholar 

  5. Curtiss, J. H.: Transfinite diameter and harmonic polynomial interpolation. J. d'Analyse Math.22, 371–389 (1969).

    Google Scholar 

  6. Gaier, D.: Konstruktive Methoden der konformen Abbildung. Berlin-Göttingen-Heidelberg: Springer. 1964.

    Google Scholar 

  7. Jackson, D.: The Theory of Approximation. New York: Amer. Math. Soc. Colloq. Publ. 11. 1930.

  8. Menke, K.: Extremalpunkte und konforme Abbildung. Math. Ann.195, 292–308 (1972).

    Google Scholar 

  9. Menke, K.: Bestimmung von Näherungen für die konforme Abbildung mit Hilfe von stationären Punktsystemen. Numer. Math.22, 111–117 (1974).

    Google Scholar 

  10. Pommerenke, Ch.: Über die Verteilung der Fekete-Punkte. Math. Ann.168, 111–127 (1967).

    Google Scholar 

  11. Sobczyk, A. F.: On the Curtiss non-singularity condition in harmonic polynomial interpolation. J. Soc. Indust. Appl. Math.12, 499–514 (1964).

    Google Scholar 

  12. Walsh, J. L.: The approximation of harmonic functions by harmonic polynomials and by harmonic rational functions. Bull. Amer. Math. Soc.35, 499–544 (1929).

    Google Scholar 

  13. Walsh, J. L.: On interpolation to harmonic functions by harmonic polynomials. Proc. Nat. Acad. Sci. U.S.A.18, 514–517 (1932).

    Google Scholar 

  14. Walsh, J. L.: Solution of the Dirichlet problem for the ellipse by interpolating harmonic polynomials. J. Math. Mech.9, 193–196 (1960).

    Google Scholar 

  15. Walsh, J. L., W. E. Sewell, andH. M. Elliott: On the degree of polynomial approximation to harmonic and analytic functions. Trans. Amer. Math. Soc.67, 381–420 (1949).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menke, K. Lösung des Dirichlet-Problems bei Jordangebieten mit analytischem Rand durch Interpolation. Monatshefte für Mathematik 80, 297–306 (1975). https://doi.org/10.1007/BF01472577

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01472577

Navigation