Skip to main content
Log in

Pointwise error estimates for linear finite element approximation to elliptic Dirichlet problems in smooth domains

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we consider pointwise error estimation for the linear finite element approximation to −Δu + u = f in Ω, u = g on Γ, where Ω is a bounded domain in \(\mathbb {R}^{N}\) (N = 2,3) with smooth boundary Γ. The domain Ω is approximated by a polyhedron Ωh with boundary Γh, while the Dirichlet data g is approximated by the Lagrange interpolation or L2-projection of its transformation to Γh. By using a duality argument, the pointwise errors are converted to the approximation errors plus the finite element errors for two classes of regularized Green’s functions under the W1,1-norm, while the latter errors are further converted to the local weighted H1- and L2-norms estimates by using the dyadic annuli decomposition. Finally, we obtain the convergence rates \(O(h^{2}|\log h|)\) for the \(L^{\infty }\)-norm error and O(h) for the \(W^{1,\infty }\)-norm error. Numerical examples are provided to confirm our theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bakaev, N.Y., Thomée, V., Wahlbin, L.B.: Maximum-norm estimates for resolvents of elliptic finite element operators. Math. Comput. 72, 1597–1610 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bernardi, C.: Optimal finite-element interpolation on curved domains, SIAM. J. Numer. Anal. 26(5), 1212–1240 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bramble, J.H., King, J.T.: A robust finite element method for nonhomogeneous Dirichlet problems in domains with curved boundaries. Math. Comput. 63(207), 1–17 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd ed. Springer, New York (2008)

    Book  MATH  Google Scholar 

  5. C~ermák, L.: The finite element solution of second order elliptic problems with the Neumann boundary condition. Apl. Mat. 28(6), 430–456 (1983)

    Article  MathSciNet  Google Scholar 

  6. Chen, C.M., Huang, Y.Q.: \(W^{1,\infty }\)-stability of finite element solutions of elliptic problems. Hunan Ann. Math. 6, 81–89 (1986). (In Chinese)

    MathSciNet  Google Scholar 

  7. Ciarlet, P.G.: The Finite Element Methods for Elliptic Problems, North-Holland, Vol. 4, 1st ed. (1978)

  8. Deckelnick, K., Günther, A., Hinze, M.: Finite element approximation of Dirichlet boundary control for elliptic PDEs on two and three-dimensional curved domains. SIAM J. Control Optim. 48, 2798–2819 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Demlow, A., Guzmán, J., Schatz, A.H.: Local energy estimates for the finite element method on sharply varying grids. Math. Comput. 80, 1–9 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dörich, B., Leibold, J., Maier, B.: Optimal \(w^{1,\infty }\)-estimates for an isoparametric finite element discretization of elliptic boundary value problems. Electron. Trans. Numer. Anal. 58, 1–21 (2023)

    MathSciNet  MATH  Google Scholar 

  11. Evans, L.C.: Partial Differential Equations, AMS, Vol. 19, 2nd ed. (2002)

  12. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, Springer Reprint of the 1998 edition (2001)

  13. Girault, V., Raviart, P.A.: Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms. Springer, New York (1986)

    Book  MATH  Google Scholar 

  14. Gong, W., Zhu, S.: On discrete shape gradients of boundary type for PDE-constrained shape optimization. SIAM J. Numer. Anal. 59(3), 1510–1541 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kashiwabara, T., Kemmochi, T.: Pointwise error estimates of linear finite element method for Neumann boundary value problems in a smooth domain. Numer. Math. 3(144), 553–584 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kashiwabara, T., Kemmochi, T.: Stability, analyticity, and maximal regularity for parabolic finite element problems on smooth domains. Math. Comput. 89(324), 1647–1679 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kashiwabara, T., Oikawa, I., Zhou, G.: Penalty method with P1/P1 finite element approximation for the Stokes equations under the slip boundary condition. Numer. Math. 4(134), 705–740 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Knobloch, P.: Variational crimes in a finite element discretization of 3D Stokes equations with nonstandard boundary conditions, East-West. J. Numer. Math. 7(2), 133–158 (1999)

    MathSciNet  MATH  Google Scholar 

  19. Leykekhman, D., Vexler, B.: Finite element pointwise results on convex polyhedral domains. SIAM J. Numer. Anal. 54, 561–587 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Natterer, F.: Über die punktweise Konvergenz Finiter Elemente. Numer. Math. 25, 67–77 (1975/76)

  21. Nitsche, J.: \(L^{\infty }\) Convergence of Finite Element Approximation, 2nd Conf. on Finite Elements, Rennes, France (1975)

  22. Rannacher, R., Scott, R.: Some optimal error estimate for piecewise linear finite element approximation. Math. Comput. 38(158), 437–445 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  23. Schatz, A.H.: Interior maximum norm estimates for finite element methods. Math. Comput. 31(138), 414–442 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  24. Schatz, A.H., Wahlbin, L.B.: Interior maximum-norm estimate for finite element methods. Part II Math. Comput. 64(211), 907–928 (1995)

    MathSciNet  MATH  Google Scholar 

  25. Schatz, A.H., Wahlbin, L.B.: On the quasi-optimality in \(l_{\infty }\) of the Ḧ1-projection into finite element spaces. Math. Comput. 38(157), 1–22 (1982)

    MATH  Google Scholar 

  26. Scott, R.: Optimal \(l^{\infty }\) estimates for the finite element method on irregular meshes. Math. Comput. 30 (136), 681–697 (1976)

    MathSciNet  MATH  Google Scholar 

  27. Scott, R.L., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54, 483–493 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  28. Thomée, T., Wahlbin, L.B.: Stability and analyticity in maximum-norm for simplicial Lagrange finite element semidiscretizations of parabolic equations with Dirichlet boundary conditions. Numer. Math. 87, 373–389 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems, Springer 2nd ed. (2006)

  30. Wahlbin, L.B.: Maximum norm error estimates in the finite element method with isoparametric quadratic elements and numerical integration, R.A.I.R.O. Numer. Anal. 12, 173–202 (1978)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to two anonymous referees for their suggestions which helped to improve the quality of this paper. In particular, we would like to thank one referee who suggests the numerical validation of the corrections for the \(L^{\infty }({\Omega })\)-norm errors presented in Remark 5.6.

Funding

Wei Gong was supported in part by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB 41000000) and the National Natural Science Foundation of China (Grant No. 12071468). Xiaoping Xie was supported in part by the National Natural Science Foundation of China (Grant No. 12171340 and 11771312).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Gong.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by: Ilaria Perugia

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, W., Liang, D. & Xie, X. Pointwise error estimates for linear finite element approximation to elliptic Dirichlet problems in smooth domains. Adv Comput Math 49, 15 (2023). https://doi.org/10.1007/s10444-023-10017-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-023-10017-3

Keywords

Mathematics Subject Classification (2010)

Navigation