Skip to main content
Log in

Hydrogen atom yield in RF and microwave hydrogen discharges

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The hydrogen atom yield in pure-H2 RF and microwave-sustained discharges is investigated both theoretically and experimentally. A particle balance model is developed that provides the concentrations of the H, H2, H+, H +2 , and H +3 species. It is also shown that an approximate solution of this model is adequate for calculating the concentration of H atoms (required, for instance, in diamond film deposition) in the 0.1–10 torr range. Next, the validity of the actinometry technique applied to the determination of the H-atom density in pure-H2 discharges is examined. Using this diagnostic, it is observed that the H-atom concentration decreases when the vessel wall temperature increases, owing to the increased efficiency of atomic hydrogen recombination on the wall. To overcome this effect, the discharge tube wall is cooled off with dimethyl polysiloxane, a low-loss dielectric liquid. It improves significantly the H-atom concentration at 2450 MHz provided the pressure is typically below a few torr and the power density is not too high.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. C. Angus and C. C. Hayman,Science 241, 913 (1988).

    Google Scholar 

  2. K. E. Spear,J. Am. Ceram. Soc. 72, 171 (1989).

    Google Scholar 

  3. S. Matsumoto, Y. Sato, M. Tsutsumi, and N. Setaka,J. Mater. Sci. 17, 3106 (1982).

    Google Scholar 

  4. S. Matsumoto,J. Mater. Sci. Lett. 4, 600 (1985).

    Google Scholar 

  5. D. E. Rosner,Annu. Rev. Mat. Sci. 2, 573 (1972).

    Google Scholar 

  6. B. B. Pate,Surf. Sci. 165, 83 (1986).

    Google Scholar 

  7. T. Anthony, inThe Physics and Chemistry of Carbides, Nitrides, and Borides, R. Freer, ed., Kluwer, Dordrecht (1990), pp. 133–158.

    Google Scholar 

  8. O. Fukumasa, R. Itatani, and S. Saeki,J. Phys. D. Appl. Phys. 18, 2433 (1985).

    Google Scholar 

  9. A. R. Martin and T. S. Green, Culham Lab. Rpt. CLM-R159 (1976).

  10. P. A. Sá, J. Loureiro, and C. M. Ferreira,J. Phys. D: Appl. Phys. 25, 960 (1992).

    Google Scholar 

  11. D. Rapp and P. Englander-Golden,J. Chem, Phys. 43, 1464 (1965).

    Google Scholar 

  12. S. J. B. Corrigan,J. Chem. Phys. 43, 4381 (1965).

    Google Scholar 

  13. B. Peart and K. T. Dolder, J. Phys. B5, 860 (1972).

    Google Scholar 

  14. R. H. Neynaber and S. M. Trujillo,Phys. Rev. 167, 63 (1968).

    Google Scholar 

  15. W. L. Fite and R. T. Brackman,Phys. Rev. 112, 1141 (1958).

    Google Scholar 

  16. M. T. Leu, M. A. Biondi, and R. Johnsen,Phys. Rev. A 9, 413 (1973).

    Google Scholar 

  17. B. Peart and K. T. Dolder,J. Phys. B 7, 236 (1974).

    Google Scholar 

  18. O. Fukumasa,J. Phys. D: Appl. Phys. 22, 1668 (1989).

    Google Scholar 

  19. K. Kurihara, K. Sasaki, and M. Kawarada,Fujitsu Sci. Tech. J. 25, 44 (1989).

    Google Scholar 

  20. E. W. McDaniel,Collision Phenomena in Ionized Gases, Wiley, New York (1964).

    Google Scholar 

  21. P. Bou, J. C. Boettner, and L. Vandelbulcke,Jpn. J. Appl. Phys. 31, 1505 (1992);ibid.,31, 2931 (1992).

    Google Scholar 

  22. B. J. Wood and H. Wise,J. Chem. Phys. 66, 1049 (1962).

    Google Scholar 

  23. A. T. Bell,Ind. Eng. Chem. Fundam. 11, 209 (1972).

    Google Scholar 

  24. A. R. Badzian and R. C. De Vries,Mater. Res. Bull. 23, 385 (1988).

    Google Scholar 

  25. E. W. McDaniel and E. A. Mason,The Mobility and Diffusion of Ions in Gases, Wiley, New York (1973).

    Google Scholar 

  26. A. von Engel,Ionized Gases, Clarendon Press, Oxford (1955).

    Google Scholar 

  27. M. Moisan, C. Barbeau, R. Claude, C. M. Ferreira, J. Margot, J. Paraszczak, A. B. Sá, G. Sauvé and M. R. Wertheimer,J. Vac. Sci. Technol. B 9, 8 (1991).

    Google Scholar 

  28. J. W. Coburn and M. Chen,J. Appl. Phys. 51, 3134 (1980).

    Google Scholar 

  29. J. A. Mucha, D. L. Flamm, and D. E. Ibbotson,J. Appl. Phys. 65, 3448 (1989).

    Google Scholar 

  30. P. Ranson, A. Bouchoule, and D. Salah,Le Vide, les Couches Minces, Suppl. au no. 237, 110 (1987).

  31. S. E. Savas,Appl. Phys. Lett. 48, 1042 (1986).

    Google Scholar 

  32. H. A. Hyman,Phys. Rev. A 18, 441 (1978).

    Google Scholar 

  33. L. G. Piper, J. E. Velazco, and D. W. Setser,J. Chem. Phys. 59, 3323 (1973).

    Google Scholar 

  34. R. d'Agostino, V. Colaprico, and F. Cramarossa,Plasma Chem. Plasma Process. 1, 365 (1981).

    Google Scholar 

  35. V. M. Donnelly, D. L. Flamm, W. C. Dautremont-Smith, and D. J. Werder,J. Appl. Phys. 55, 242 (1984).

    Google Scholar 

  36. R. E. Walkup, K. L. Saenger, and G. S. Selwyn,J. Chem. Phys. 84, 2668 (1986).

    Google Scholar 

  37. W. L. Fite, R. T. Brackmann, D. G. Hummer, and R. F. Stebbings,Phys. Rev. 116, 363 (1959).

    Google Scholar 

  38. W. E. Lamb, Jr. and R. C. Retherford,Phys. Rev. 79, 549 (1950).

    Google Scholar 

  39. J. D. Walker, Jr. and R. M. St. John,J. Chem. Phys. 61, 2394 (1974).

    Google Scholar 

  40. G. R. Möhlmann, F. J. de Heer, and J. Los,Chem. Phys. 25, 103 (1977).

    Google Scholar 

  41. M. Moisan and Z. Zakrewski, J. Phys. D: Appl. Phys.24, 1025 (1991).

    Google Scholar 

  42. M. A. Heald and C. B. Wharton,Plasma Diagnostics with Microwaves, Wiley, New York (1965).

    Google Scholar 

  43. J. Margot-Chaker, M. Moisan, M. Chaker, V. M. M. Glaude, P. Lauque, J. Paraszczak, and G. SauvéJ. Appl. Phys. 66, 4134 (1989).

    Google Scholar 

  44. K. Matsunaga, K. Kadota, M. Fujiwara, and J. Fujita,Jpn. J. Appl. Phys. 20, L615 (1981).

    Google Scholar 

  45. T. M. Shaw,Studies of Microwave Gas Discharges: Production of Free Radicals in a Microwave Discharge, General Electric Tech. Info. Rep. No. TIS R58ELM 115 (1958).

  46. P. K. Bachmann, R. Weimer, and R. Messier, inProceedings of the Diamond Technology Initiative Symposium (July 12–14, 1988), Tech. Digest, paper T2.

  47. J. Hubert, R. Sing, D. Boudreau, K. C. Tran, C. Lauzon, and M. Moisan, inMicrowave Discharges: Fundamentals and Applications, C. M. Ferreira and M. Moisan, eds., NATO ASI Series B: Physics302, Plenum, New York (1993), pp. 509–530.

    Google Scholar 

  48. L. A. Schlie, R. D. Rathge, and E. A. Dunkle,Rev. Sci. Instrum. 62, 381 (1991).

    Google Scholar 

  49. D. G. Goodwin and G. G. Gavillet,J. Appl. Phys. 68, 6393 (1990).

    Google Scholar 

  50. W. L. Hsu,Appl. Phys. Lett. 59, 1427 (1991).

    Google Scholar 

  51. L. Schäfer, U. Bringmann, C.-P. Klages, U. Meier, and K. Kohse-Höinghaus, inProceedings of the NATO Advanced Study Institute on Diamond and Diamond-Like Films and Coatings, R. E. Clausing, L. L. Horton, J. C. Angus, and P. Koidl, eds., NATO ASI Series B: Physics266, Plenum, New York (1991), pp. 643–651.

    Google Scholar 

  52. F. G. Celii, P. Pehrsson, H. T. Wang, and J. E. Butler,Appl. Phys. Lett. 52, 2043 (1988).

    Google Scholar 

  53. W. Zhu, C. A. Randall, A. R. Badzian, and R. Messier,J. Vac. Sci. Technol. A 7, 2315 (1989).

    Google Scholar 

  54. C. R. Koemtzopoulos, D. J. Economou, and R. Pollard,Diamond Rel. Mater. 2, 25 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

St-Onge, L., Moisan, M. Hydrogen atom yield in RF and microwave hydrogen discharges. Plasma Chem Plasma Process 14, 87–116 (1994). https://doi.org/10.1007/BF01465741

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01465741

Key words

Navigation