Skip to main content
Log in

The mesosphere

  • Published:
Geophysical surveys Aims and scope Submit manuscript

Abstract

The mesosphere, which extends from about 50 to 90 km altitude, is an atmospheric region characterized by a negative gradient of solar energy absorption, and thus, temperature. Although the distribution of most minor constituents is dominated by photochemistry, vertical transport does have a pronounced effect on many of them. Hence, we discuss the basic dynamic principles and their application to the important mesopheric motions: acoustic-gravity waves, tides, planetary scale waves, and eddy motions.

The most important minor electrically neutral constituents are compounds of oxygen, hydrogen and nitrogen. In fact, the allotropes of oxygen are in many ways the most significant because they screen out solar ultraviolet radiation and provide the principal source of mesospheric heating (absorption of solar UV by O2 and ozone). We also discuss oxides of nitrogen and hydrogen which strongly influence the balance of odd oxygen (O and O3). Brief discussions of the chemistry of carbon compounds and of excited species are also included.

The chemistry of ionic species present in the mesosphere is very important because it strongly influences the propagationand absorption of radio waves. Because of ion clustering and negative-ion formation, such chemistry is extremely complex, and it is only very recently that we have begun to understand it. The current state of knowledge is discussed in some detail. The principles involved in constructing models for predicting the distribution of minor constituents, both neutral and ionic, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackerman, M. and Simon, P.: 1973, ‘Rocket Measurements of Solar Fluxes at 1216 Å, 1450 Å and 1710 Å,’Solar Phys. 30, 345.

    Google Scholar 

  • Anderson, J. G.: 1971, ‘Rocket Measurement of OH in the Mesosphere’,J. Geophys. Res. 76, 7820.

    Google Scholar 

  • Arnold, F., Kissel, J., Krankowsky, D., Weider, H., and Zahringer, J.: 1971, ‘Negative Ions in the Lower Ionosphere: A Mass Spectrometer Measurement’,J. Atmospheric Terrest. Phys. 33, 1169.

    Google Scholar 

  • Banks, P. M. and Kockarts, G.: 1973,Aeronomy, vol. A, Academic Press, New York and London, p. 172.

    Google Scholar 

  • Barth, C. A.: 1966, ‘Rocket Measurement of Nitric Oxide in the Upper Atmosphere’,Planetary Space Sci. 14, 623.

    Google Scholar 

  • Blamont, J. E. and Vidal-Madjar, A.: 1971, ‘Monitoring of the Lyman Alpha Emission Line of the Sun During the Year 1969’,J. Geophys. Res. 76, 4311.

    Google Scholar 

  • Chapman, S. and Lindzen, R. S.: 1970,Atmospheric Tides, D. Reidel, Dordrecht, p. 200.

    Google Scholar 

  • Chubb, T. A., Friedman, H., and Kreplin, R. W.: 1960, ‘Measurements Made of High Energy X-rays Accompanying Three Class 2+ Solar Flares’,J. Geophys. Res. 65, 1831.

    Google Scholar 

  • Detweiler, C. R., Garrett, D. L., Purcell, J. D., and Tousey, R.: 1961, ‘The Intensity Distribution in the Ultraviolet Solar Spectrum’,Ann. Geophys. 17, 263.

    Google Scholar 

  • Dickinson, R. E.: 1973, ‘Method of Parameterization of Infrared Cooling between 30 and 70 km’,J. Geophys. Res. 78, 4451.

    Google Scholar 

  • Dubach J. and Barker, W. A.: 1971, ‘Charged Particle Induced Ionization Rates in Planetary Atmospheres’,J. Atmospheric Terrest. Phys. 33, 1287.

    Google Scholar 

  • Fehsenfeld, F. C. and Ferguson, E. E.: 1974, ‘Laboratory Studies of Negative Ion Reactions with Atmospheric Trace Constituents’,J. Chem. Phys. 61, 3181.

    Google Scholar 

  • Hall, L. A., Damon, K. R., and Hinteregger, H. E.: 1963, ‘Solar Extreme Ultraviolet Photon Flux Measurements in the Upper Atmosphere of August 1961’, in W. Priester (ed.),Space Research III, North-Holland, Amsterdam, p. 745.

    Google Scholar 

  • Hunt, B. G.: 1966, ‘Photochemistry of Ozone in a Moist Atmosphere’,J. Geophys. Res. 71, 1385.

    Google Scholar 

  • Hunt, B. G., 1973, ‘A Generalized Aeronomic Model of the Mesosphere and Lower Thermosphere Including Ionospheric Processes’,J. Atmospheric Terrest. Phys. 35, 1755.

    Google Scholar 

  • Justus, C. G. and Woodrum, A.: 1973, ‘Upper Atmospheric Planetary-Wave and Gravity-Wave Observations’,J. Atmospheric Sci. 30, 1267.

    Google Scholar 

  • Kirchoff, V. W. J. H. and Clemesha, B. R.: 1973, ‘Atmospheric Sodium Measurements at 23°S’,J. Atmospheric Terrest. Phys. 34, 1493.

    Google Scholar 

  • Lindzen, R. S.: 1970, ‘Internal Gravity Waves in Atmospheres with Realistic Dissipation and Temperature. Part I. Mathematical Development and Propagation of Waves into the Thermosphere’,Geophys. Fluid Dyn. 1, 303.

    Google Scholar 

  • Llewellyn, E. G., Evans, W. F. J., and Wood, H. C.: 1973, ‘O2(2Δ) in the Atmosphere’, in B. M. McCormac (ed.),Physics and Chemistry of the Upper Atmosphere, D. Reidel, Dordrecht, p. 193.

    Google Scholar 

  • Meira, L. G.: 1971, ‘Rocket Measurements of Upper Atmospheric Nitric Oxide and Their Consequences to the Lower Ionosphere’,J. Geophys. Res. 76, 202.

    Google Scholar 

  • Nagata, T., Tohmatsu, T., and Ogawa T.: 1971, ‘Sounding Rocket Measurement of Atmospheric Ozone Density, 1965–1970’, in K. Ya. Kondratyev, M. J. Rycroft, and C. Sagan (eds.),Space Research XI, Akademie-Verlag, Berlin, p. 849.

    Google Scholar 

  • Narcisi, R. S.: 1973, ‘Mass Spectrometric Measurements in the Ionosphere’, in B. M. McCormac (ed.),Physics and Chemistry of the Upper Atmosphere, D. Reidel, Dordrecht, p. 171.

    Google Scholar 

  • Narcisi, R. S. and Bailey, A. D.: 1965, ‘Mass Spectrometric Measurements of Positive Ions at Altitudes from 64–112 km’,J. Geophys. Res. 70, 3687.

    Google Scholar 

  • Narcisi, R. S., Bailey, A. D., Dell Luca, L., Sherman, C., and Thomas, D. M.: 1971, ‘Mass Spectrometric Measurements of Negative Ions in the D- and Lower E-Regions’,J. Atmospheric Terrest. Phys. 33 1147.

    Google Scholar 

  • O'Brien, K.: 1970, ‘Calculated Cosmic Ray Ionization in the Lower Atmosphere’,J. Geophys. Res. 75, 4357.

    Google Scholar 

  • Pearce, J. B.: 1969, ‘Rocket Measurements of Nitric Oxide between 60 and 96 km’,J. Geophys. Res. 74, 853.

    Google Scholar 

  • Ratcliffe, J. A.: 1971, ‘William Henry Eccles’,Biographical Memoirs of Fellows of the Royal Society 17 (Nov.), Royal Society, London, p. 195.

    Google Scholar 

  • Ratcliffe, J. A.: 1972, ‘The Formation of the Ionosphere. Ideas of the Early Years (1925–1955)’,Geofyiske Publ. 29, 13.

    Google Scholar 

  • Reid, G. C.: 1971, ‘The Roles of Water Vapor and Nitric Oxide in Determining Electron Densities in the D-region’ in G. Fiocco (ed.)Mesospheric Models and Related Experiments D. Reidel, Dordrecht. p. 198.

    Google Scholar 

  • Scholz, T. G., Ehhalt, D. H., Heidt, L. E., and Martell, E. A.: 1970, ‘Water Vapor, Molecular Hydrogen, Methane, and Tritium Concentrations near the Stratopause’,J. Geophys. Res. 75, 3049.

    Google Scholar 

  • Shimazaki, T.: 1967, ‘Dynamic Effects on Atomic and Molecular Oxygen Density Distributions in the Upper Atmosphere; a Numerical Solution to Equations of Motion and Continuity’,J. Atmospheric Terrest. Phys. 29, 723.

    Google Scholar 

  • Shimazaki, T. and Laird, A. R.: 1970, A Model Calculation of the Diurnal Variation in Minor Neutral Constituents in the Mesosphere and Lower Thermosphere Including Transport Effects’,J. Geophys. Res. 75, 3221; correction, 1972,J. Geophys. Res. 77, 276.

    Google Scholar 

  • Smith, E. V. P. and Gottlieb, D. M.: 1974, ‘Solar Flux and Its Variations’,Space Sci. Rev. 16, 771.

    Google Scholar 

  • Strobel, D. F.: 1971, ‘Odd Nitrogen in the Mesosphere’,J. Geophys. Res. 76, 8384.

    Google Scholar 

  • Swider, W. and Narcisi, R. S.: 1975, ‘A Study of Nighttime D-Region During a PCA Event’,J. Geophys. Res. 80, 655.

    Google Scholar 

  • Thomas, L., Gondhalekar, P. M., and Bowman, M. R.: 1973, ‘The Negative Ion Composition of the Daytime D-region’,J. Atmospheric Terrest. Phys. 35, 397.

    Google Scholar 

  • Tisone, G. C.: 1973, ‘Measurements of NO Densities During Sunrise at Kauai’,J. Geophys. Res. 78, 746.

    Google Scholar 

  • Turco, R. P.: 1975, ‘Photodissociation Rates in the Atmosphere below 100 km’,Geophys. Surveys 2, 153.

    Google Scholar 

  • Velinov, P.: 1968, ‘Ionization in the Ionospheric D-region by Galactic and Solar Cosmic Rays’,J. Atmospheric Terrest. Phys. 30, 1891.

    Google Scholar 

  • Webber, W. R.: 1962, ‘The Production of Free Electrons in the Ionospheric D-Layer by Solar and Galactic Cosmic Rays and the Resultant Absorption of Radio Waves’,J. Geophys. Res. 67, 5091.

    Google Scholar 

  • Whitten, R. C. and Poppoff, I. G.: 1965,Physics of the Lower Ionosphere, Prentice-Hall, Englewood Cliffs, N. J., pp. 136–138.

    Google Scholar 

  • Whitten, R. C. and Poppoff, I. G.: 1971,Fundamentals of Aeronomy, John Wiley and Sons, New York, pp. 162–165, pp. 245–252.

    Google Scholar 

  • Whitten, R. C., Sims, J. S., and Turco, R. P.: 1973, ‘A model of Carbon Compounds in the Stratosphere and Mesosphere’,J. Geophys. Res. 78, 5362.

    Google Scholar 

  • Whitten, R. C. and Turco, R. P.: 1974, Perturbation of the Stratosphere and Mesosphere by Aerospace Vehicles’,AIAA J. 12, 1110.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poppoff, I.G., Whitten, R.C. The mesosphere. Geophysical Surveys 2, 399–429 (1976). https://doi.org/10.1007/BF01454193

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01454193

Keywords

Navigation