Skip to main content
Log in

Shape optimization approach to numerical solution of the Obstacle Problem

  • Published:
Applied Mathematics and Optimization Submit manuscript

Abstract

We discuss an algorithm for the numerical solution of the Obstacle Problem in which the coincidence set is considered as the prime unknown. Domain functionals are defined for which the coincidence set serves as the minimizing element. Their gradients are computed (in the sense of the material derivative), and the gradient descent method employed to minimize these functionals. Numerical example is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams RA (1975) Sobolev spaces. Academic Press, New York

    Google Scholar 

  2. Babuš I (1961) Stability of domains with respect to the basic problems in the theory of PDE. Czech Math J 11:76–105, 165–203

    Google Scholar 

  3. Baiocchi C, Pozzi, GA (1977) Error estimates and free-boundary convergence for a finite difference discretization of a parabolic variational inequality, R.A.I.R.O. Anal Num 11:315–340

    Google Scholar 

  4. Begis D, Glowinski R (1975) Application de la méthode des elements finis à l'approximation d'un probleme de domaine optimal. Méthodes de résolution des problèmes approchès. Appl Math Optim 2:130–169

    Article  Google Scholar 

  5. Brezzi F, Sacchi G (1976) A finite element approximation of a variational inequality related to hydraulics. Calcolo 13:257–273

    Google Scholar 

  6. Céa J (1981) Problems of shape optimal design. In Haug EJ, Céa J (eds), Sijthoff & Hoordhoff, Optimization of Distributed Parameters Structures.

  7. Chenais D (1975) On the existence of a solution in a domain identification problem. J Math Anal Appl 52:189–219

    Google Scholar 

  8. Chenais D (1978) Homéomorphisme entre ouverts lipschitziens. Ann Math Pura Appl 118:343–398

    Google Scholar 

  9. Dervieux A (1981) A perturbation study of the obstacle problem by means of a generalized Implicit Function Theorem. Ann Math Pura Appl 127:321–364

    Google Scholar 

  10. Fagé DM (1981) The indicatrix method in free boundary problems. Numer Math 38:39–52

    Google Scholar 

  11. Fagé DM (1981) The indicatrix method II. Numer Math 38:255–261

    Google Scholar 

  12. Fagé DM (1982) Approximation of time-dependent free boundaries. Numer Math 40:179–199

    Google Scholar 

  13. Garabedian PR (1964) Partial Differential Equations. Wiley, New York

    Google Scholar 

  14. Gilbarg D, Trudinger NS (1977) Elliptic PDE of Second Order. Springer-Verlag, New York

    Google Scholar 

  15. Glowinski R, Lions JL, Trémolières R (1976) Analyze Numerique des Inequations Variotionnelles, tl. Dunod, Paris

    Google Scholar 

  16. Haug EJ, Céa J (eds) (1981) Optimization of Distributed Parameters Structures, vol. 1, 2. Sijthoff & Hoordhoff

  17. Hou JW (1982) Shape optimal design and free boundary value problems. Ph.D. Thesis, Mechanical Engineering, University of Iowa, Iowa City, Iowa

    Google Scholar 

  18. Kantorovich LV, Akilov GP (1964) Functional Analysis in Normed Spaces. Macmillan, New York

    Google Scholar 

  19. Kerimov AK (1982) On optimization problems with free boundaries. Soviet Math Dokl 26:372–375

    Google Scholar 

  20. Kinderlehrer D, Stampacchia G (1980) An Introduction to Variational Inequalities and Their Applications. Academic Press, New York

    Google Scholar 

  21. Kuratowski C (1950) Topologie, Warszawa-Wroclaw

  22. Landkof NS (1972) Foundations of Modern Potential Theory. Springer-Verlag, New York

    Google Scholar 

  23. Lions JL (1971) Optimal Control of Systems Governed by PDE. Springer-Verlag, New York

    Google Scholar 

  24. Mosco U, Scarpini F (1975) Complementarity systems and approximation of variational inequalities, R.A.I.R.O. Anal Num 9:83–104

    Google Scholar 

  25. Pironneau O (1982) Optimal shape design for elliptic systems. In Drenick RF, Kozin F (eds) System Modeling and Optimization. Springer-Verlag, New York

    Google Scholar 

  26. Schaeffer DG (1975) A stability theorem for the obstacle problem. Adv Math 16:34–47

    Google Scholar 

  27. Zolesio JP (1979) Identification de domaines par deformations, These de Doct. D'Etat, Nice

    Google Scholar 

  28. Zolesio JP (1981) The material derivative (or speed) method for shape optimization. In Haug EJ, Céa J (eds) Optimization of Distributed Parameters Structures. Sijthoff & Hoordhoff,

  29. Zolesio JP (1981) Domain variational formulation of free boundary problem. In Haug EJ, Céa J (eds) Optimization of Distributed Parameters Structures. Sijthoff & Hoordhoff,

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogomolny, A., Hou, J.W. Shape optimization approach to numerical solution of the Obstacle Problem. Appl Math Optim 12, 45–72 (1984). https://doi.org/10.1007/BF01449033

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01449033

Keywords

Navigation