Skip to main content
Log in

Shape Optimization for Interface Identification with Obstacle Problems

  • Published:
Vietnam Journal of Mathematics Aims and scope Submit manuscript

Abstract

Shape optimization is an industrially highly relevant subject. Recently, it gained much interest due to novel developments in the usage of volumetric formulations of shape derivatives. This paper is based on recent results in the field of PDE constrained shape optimization and carries the achieved methodology over to shape optimization problems with constraints in the form of variational inequalities, in particular, in the form of obstacle problems. A novel expression for the volumetric shape derivative in this context is proven and numerical results of a descent strategy based on this expression are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Absil, P.-A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2008)

    Book  Google Scholar 

  2. Allaire, G.: Conception Optimale de Structures. Mathématiques & Applications, vol. 58. Springer, Berlin (2007)

    Google Scholar 

  3. Ameur, H.B., Burger, M., Hackl, B.: Level set methods for geometric inverse problems in linear elasticity. Inverse Probl. 20, 673–696 (2004)

    Article  MathSciNet  Google Scholar 

  4. Berggren, M.: A unified discrete–continuous sensitivity analysis method for shape optimization. In: Fitzgibbon, W. et al. (eds.) Applied and Numerical Partial Differential Equations. Computational Methods in Applied Sciences, vol. 15, pp. 25–39. Springer, Dordrecht (2010)

    Google Scholar 

  5. Bock, H.G.: Numerical treatment of inverse problems in chemical reaction kinetics. In: Ebert, K.H., Deuflhard, P., Jäger, W (eds.) Modelling of Chemical Reaction Systems. Springer Series in Chemical Physics, vol. 18, pp. 102–125. Springer, Berlin (1981)

    Google Scholar 

  6. Céa, J.: Conception optimale ou identification de formes calcul rapide de la dérivée directionelle de la fonction coût. RAIRO Model Math. Anal. Numér. 20, 371–402 (1986)

    Article  MathSciNet  Google Scholar 

  7. Correa, R., Seeger, A.: Directional derivative of a minimax function. Nonlinear Anal. 9, 13–22 (1985)

    Article  MathSciNet  Google Scholar 

  8. Delfour, M.C., Zolésio, J.P.: Shapes and Geometries: Analysis, Differential Calculus, and Optimization. SIAM, Philadelphia (2001)

    MATH  Google Scholar 

  9. Denkowski, Z., Migorski, S.: Optimal shape design for hemivariational inequalities. Univ. Iagell. Acta Mat. 36, 81–88 (1998)

    MathSciNet  MATH  Google Scholar 

  10. Eppler, K., Harbrecht, H., Schneider, R.: On convergence in elliptic shape optimization. SIAM J. Control Optim. 46, 61–83 (2007)

    Article  MathSciNet  Google Scholar 

  11. Gangl, P., Laurain, A., Meftahi, H., Sturm, K.: Shape optimization of an electric motor subject to nonlinear magnetostatics. arXiv:1501.04752 (2015)

  12. Gasiński, L.: Mapping method in optimal shape design problems governed by hemivariational inequalities. In: Cagnol, J., Polis, M. P., Zolésio, J. (eds.) Shape Optimization and Optimal Design. Lecture Notes in Pure and Applied Mathematics, vol. 216, pp. 277–288. Marcel Dekker, New York (2001)

  13. Haslinger, J., Mäkinen, R.A.E.: Introduction to Shape Optimization: Theory, Approximation, and Computation. Advances in Design and Control. SIAM, Philadelphia (2003)

    Book  Google Scholar 

  14. Hintermüller, M.: Fast level set based algorithms using shape and topological sensitivity information. Control Cybern. 34, 305–324 (2005)

    MathSciNet  MATH  Google Scholar 

  15. Hintermüller, M., Laurain, A.: Optimal shape design subject to elliptic variational inequalities. SIAM J. Control Optim. 49, 1015–1047 (2011)

    Article  MathSciNet  Google Scholar 

  16. Hintermüller, M., Ring, W.: A second order shape optimization approach for image segmentation. SIAM J. Appl. Math. 64, 442–467 (2003)

    Article  MathSciNet  Google Scholar 

  17. Ito, K., Kunisch, K.: Semi-smooth Newton methods for variational inequalities of the first kind. ESAIM: Math. Model. Numer. Anal. 37, 41–62 (2003)

    Article  MathSciNet  Google Scholar 

  18. Ito, K., Kunisch, K.: Lagrange Multiplier Approach to Variational Problems and Applications. Advances in Design and Control, vol. 15. SIAM, Philadelphia (2008)

    MATH  Google Scholar 

  19. Ito, K., Kunisch, K., Peichl, G.H.: Variational approach to shape derivatives. ESAIM: Control Optim. Calc. Var. 14, 517–539 (2008)

    Article  MathSciNet  Google Scholar 

  20. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Classics in Applied Mathematics, vol. 31. SIAM, Philadelphia (2000)

    Book  Google Scholar 

  21. Kočvara, M., Outrata, J.V.: Shape optimization of elasto-plastic bodies governed by variational inequalities. In: Zolésio, J. (ed.) Boundary Control and Variation. Lecture Notes in Pure and Applied Mathematics, vol. 163, pp. 261–271. Marcel Dekker, New York (1994)

  22. Liu, W.B., Rubio, J.E.: Optimal shape design for systems governed by variational inequalities, part 1: Existence theory for the elliptic case. J. Optim. Theory Appl. 69, 351–371 (1991)

    Article  MathSciNet  Google Scholar 

  23. Liu, W.B., Rubio, J.E.: Optimal shape design for systems governed by variational inequalities, part 2: Existence theory for the evolutionary case. J. Optim. Theory Appl. 69, 373–396 (1991)

    Article  MathSciNet  Google Scholar 

  24. Michor, P.W., Mumford, D.: An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach. Appl. Comput. Harmon. Anal. 23, 74–113 (2007)

    Article  MathSciNet  Google Scholar 

  25. Mohammadi, B., Pironneau, O.: Applied Shape Optimization for Fluids. Numerical Mathematics and Scientific Computation. Clarendon Press, Oxford (2001)

    MATH  Google Scholar 

  26. Myślinśki, A.M.: Domain optimization for unilateral problems by an embedding domain method. In: Cagnol, J., Polis, M.P., Zolésio, J. (eds.) Shape Optimization and Optimal Design. Lecture Notes in Pure and Applied Mathematics, vol. 216, pp. 355–370. Marcel Dekker, New York (2001)

  27. Myślinśki, A.M.: Level set approach for shape optimization of contact problems. In: Neittaanmäki, P., Rossi, T., Majava, K., Pironneau, O., Lasiecka, I. (eds.) European Congress on Computational Methods. Applied Sciences and Engineering ECCOMAS 2004 (2004)

  28. Myśliński, A.: Level set method for shape and topology optimization of contact problems. In: Korytowski, A., et al. (eds.) System Modelling and Optimization. IFIP Advances in Information and Communication Technology, vol. 312, pp. 397–410. Springer, Berlin (2007)

    MATH  Google Scholar 

  29. Nägel, A., Schulz, V., Siebenborn, M., Wittum, G.: Scalable shape optimization methods for structured inverse modeling in 3D diffusive processes. Comput. Visual. Sci. 17, 79–88 (2015)

    Article  MathSciNet  Google Scholar 

  30. Novotny, A.A., Sokołowski, J.: Topological Derivatives in Shape Optimization. Springer, Berlin (2013)

    Book  Google Scholar 

  31. Paganini, A.: Approximative shape gradients for interface problems. Tech Rep. 2014-12. ETH Zürich, Seminar for Applied Mathematics (2014)

    Google Scholar 

  32. Ring, W., Wirth, B.: Optimization methods on Riemannian manifolds and their application to shape space. SIAM J. Optim. 22, 596–627 (2012)

    Article  MathSciNet  Google Scholar 

  33. Schmidt, S.: Weak and strong form shape Hessians and their automatic generation. SIAM J. Sci. Comput. 40, C210–C233 (2018)

    Article  MathSciNet  Google Scholar 

  34. Schmidt, S., Ilic, C., Schulz, V., Gauger, N.: Three-dimensional large-scale aerodynamic shape optimization based on the shape calculus. AIAA J. 51, 2615–2627 (2013)

    Article  Google Scholar 

  35. Schulz, V.: A Riemannian view on shape optimization. Found. Comput. Math. 14, 483–501 (2014)

    Article  MathSciNet  Google Scholar 

  36. Schulz, V., Siebenborn, M.: Computational comparison of surface metrics for PDE constrained shape optimization. Comput. Methods Appl. Math. 16, 485–496 (2016)

    Article  MathSciNet  Google Scholar 

  37. Schulz, V., Siebenborn, M., Welker, K.: Structured inverse modeling in parabolic diffusion problems. SIAM J. Control Optim. 53, 3319–3338 (2015)

    Article  MathSciNet  Google Scholar 

  38. Schulz, V., Siebenborn, M., Welker, K.: Towards a Lagrange–Newton approach for PDE constrained shape optimization. In: Pratelli, A., Leugering, G (eds.) New Trends in Shape Optimization. International Series of Numerical Mathematics, vol. 166, pp. 229–249. Springer, Switzerland (2015)

    Chapter  Google Scholar 

  39. Schulz, V., Siebenborn, M., Welker, K.: A novel Steklov-Poincarétype metric for efficient PDE constrained optimization in shape spaces. SIAM J. Optim. 26, 2800–2819 (2016)

    Article  MathSciNet  Google Scholar 

  40. Siebenborn, M., Welker, K.: Algorithmic aspects of multigrid methods for optimization in shape spaces. SIAM J. Sci. Comput. 39, B1156–B1177 (2017)

    Article  MathSciNet  Google Scholar 

  41. Sokolowski, J., Zolesio, J.-P.: Introduction to Shape Optimization. Springer Series in Computational Mathematics, vol. 16. Springer, Berlin (1992)

    Book  Google Scholar 

  42. Toffel, R.: Structural Optimization of Coupled Problems. Ph.D. thesis, Universität Trier (2013). http://ubt.opus.hbz-nrw.de/volltexte/2014/838/

    Google Scholar 

  43. Udawalpola, R., Berggren, M.: Optimization of an acoustic horn with respect to efficiency and directivity. Int. J. Numer. Methods Eng. 73, 1571–1606 (2007)

    Article  MathSciNet  Google Scholar 

  44. Welker, K.: Efficient PDE Constrained Shape Optimization in Shape Spaces. Ph.D. thesis, Universität Trier (2016). http://ubt.opus.hbz-nrw.de/volltexte/2017/1024/

    Google Scholar 

  45. Welker, K.: Suitable spaces for shape optimization. arXiv:1702.07579 (2017)

Download references

Acknowledgements

This work has been supported by the German Research Foundation within the priority program SPP 1962 Non-smooth and Complementarity-based Distributed Parameter Systems: Simulation and Hierarchical Optimization under contract number Schu804/15-1 and the research training group 2126 Algorithmic Optimization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Schulz.

Additional information

This article is dedicated to the 70th birthday of Hans Georg Bock.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Führ, B., Schulz, V. & Welker, K. Shape Optimization for Interface Identification with Obstacle Problems. Vietnam J. Math. 46, 967–985 (2018). https://doi.org/10.1007/s10013-018-0312-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10013-018-0312-0

Keywords

Mathematics Subject Classification (2010)

Navigation