Skip to main content
Log in

Dynamic viscosity of polymer solutions

  • Polymer Science
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The dynamic viscosity of different long chain polymers in Aroclor permits an easy extrapolation to zero concentration only in the limiting cases of Newtonian, i. e., constant viscosity at low and high frequency, respectively. The first intrinsic viscosity [η]0 is independent of any concept of the internal viscosity. In the case of polystyrene it is proportional toM 0,65 which shows that Aroclor is a good solvent for this polymer. The second intrinsic viscosity [η] turns out to be independent ofM. It is best reproduced by the model where the internal viscosity resists only the deformation rate of the single link. The displacement rate of more distant beads is affected by the internal viscosity only in the case that it involves the deformation rate of the links. The angles between successive links may be changed at any rate.

In the intermediate range of frequencies the extrapolation of the observed dynamic viscosity to the intrinsic value was never made. The experimental data are so much affected by the concentration, i. e., by the interaction of adjacent molecules, that no conclusion may be derived from them about the properties of the isolated macromolecule. A master curve independent ofM andc is obtained by plotting of (G″-ωη )K/c overωτ 1. This means that the deformation mode in the whole molecular weight and concentration range investigated is the same. But this mode is different from that of the independent macromolecule in infinite dilution. The master curve may be described by the excess intrinsic viscosity of the Rouse model with the internal viscosity acting either between the beads on the same link only or between any distinct beads. As a consequence of the concentration effects, however, no conclusions about the properties of the single molecule can be derived from such an agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Massa, D. J., J. L. Schrag, J. D. Ferry, Macromol.4, 210 (1971).

    Article  Google Scholar 

  2. Brueggemann, B. G., M. G. Minnick, J. L. Schrag, Macromol.11, 119 (1978).

    Article  Google Scholar 

  3. Peterlin, A., Kolloid Z. & Z. Polym.209, 181 (1966).

    Article  CAS  Google Scholar 

  4. Peterlin, A., Rheol. Acta12, 496 (1973).

    Article  CAS  Google Scholar 

  5. Zimm, B. H., J. Chem Phys.24, 269 (1956).

    Article  CAS  Google Scholar 

  6. Rouse, P. E., J. Chem. Phys.21, 1272 (1953).

    Article  CAS  Google Scholar 

  7. Ferry, J. D., “Viscoelastic Properties of Polymers”, 2nd Ed., Table 13. I, p. 406, J. Wiley & Sons. (New York 1970).

    Google Scholar 

  8. Wang, F. C., B. H. Zimm, J. Polym. Sci. (Polym. Phys. Ed.)12, 1610, 1635 (1974).

    Google Scholar 

  9. Reinhold, C., A. Peterlin, J. Chem. Phys.44, 4338 (1966).

    Article  Google Scholar 

  10. Peterlin, A., Polymer2, 257 (1961).

    Article  CAS  Google Scholar 

  11. Kuhn, W., H. Kuhn, Helv. Chim. Acta28, 1533 (1945);29, 71 (1946).

    Article  CAS  Google Scholar 

  12. Cerf, R., J. Phys. Radium19, 122 (1958).

    Article  CAS  Google Scholar 

  13. Peterlin, A., Croat. Chem. Acta50, 253 (1977).

    CAS  Google Scholar 

  14. Perico, A., J. Polym. Sci. (Polym. Phys. Ed.)18, 61 (1980).

    Google Scholar 

  15. Flory, P. J., “Principles of Polymer Chemistry”, Cornell Univ. Press. Ithaca, NY (1953).

    Google Scholar 

  16. Adelman, S. A., K. F. Freed, J. Chem. Phys.67, 1380 (1977).

    Article  CAS  Google Scholar 

  17. Adler, R. S., K. F. Freed, J. Chem. Phys.72, 2032 (1980).

    Article  CAS  Google Scholar 

  18. Cerf, R., J. Polym. Sci.23, 125 (1957).

    Article  CAS  Google Scholar 

  19. Bazua, E. R., M. C. Williams, J. Chem. Phys.59, 2558 (1973).

    Article  Google Scholar 

  20. Ptytsin, O. B., Y. Y. Eizner, Zhur. Fiz. Khim.32, 2464 (1958); Zh. Thekh. Fiz.29, 1117 (1959).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Dr. F. H. Müller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peterlin, A. Dynamic viscosity of polymer solutions. Colloid & Polymer Sci 260, 278–293 (1982). https://doi.org/10.1007/BF01447965

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01447965

Key words

Navigation