Skip to main content
Log in

Specific viscosity of polymer solutions with large thermal blobs

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Literature viscosity data are reviewed in both entangled solutions and semidilute unentangled solutions, with several examples of using de Gennes’ thermal blob to rationalize observations for flexible polymers dissolved in intermediate quality solvents. Some puzzling literature data in θ-solvents are also nicely understood with two-parameter scaling upon reanalysis (where the correlation length and the tube diameter concentration dependences differ). However, some literature data seem to not be understood with this simple scheme, suggesting that our understanding of neutral polymer solution viscosity is incomplete. Lastly, combinations of experiments are suggested to better examine the concept of the thermal blob.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abe F, Horita K, Einaga Y, Yamakawa H (1994) Excluded-volume effects on the mean-square radius of gyration and intrinsic viscosity of oligo- and poly(methyl methacrylates). Macromolecules 27(3):725–732

    CAS  Google Scholar 

  • Adam M, Delsanti M (1983) Viscosity and longest relaxation time of semi-dilute polymer solutions. I. Good solvent. J Phys France 44(10):1185–1193

    CAS  Google Scholar 

  • Adam M, Delsanti M (1984) Viscosity and longest relaxation time of semi-dilute polymer solutions: II. Theta solvent. J Phys France 45(9):1513–1521

    CAS  Google Scholar 

  • Baker F (1913) The viscosity of cellulose nitrate solutions. J Chem Soc Trans 103:1653–1675

    CAS  Google Scholar 

  • Berry GC, Fox TG (1968) The viscosity of polymers and their concentrated solutions. Adv Polym Sci 5:261–357

  • Brinkman HC (1952) The viscosity of concentrated suspensions and solutions. J Chem Phys 20(4):571–571

    CAS  Google Scholar 

  • Cheng G, Graessley WW, Melnichenko YB (2009) Polymer dimensions in good solvents: crossover from semidilute to concentrated solutions. Phys Rev Lett 102(15):157801

    CAS  Google Scholar 

  • Colby RH (2010) Structure and linear viscoelasticity of flexible polymer solutions: comparison of polyelectrolyte and neutral polymer solutions. Rheol Acta 49(5):425–442

    CAS  Google Scholar 

  • Colby RH, Fetters LJ, Funk WG, Graessley WW (1991) Effects of concentration and thermodynamic interaction on the viscoelastic properties of polymer solutions. Macromolecules 24(13):3873–3882

    CAS  Google Scholar 

  • Colby RH, Rubinstein M (1990) 2-Parameter scaling for polymers in theta-solvents. Macromolecules 23(10):2753–2757

    CAS  Google Scholar 

  • Colby RH, Rubinstein M, Daoud M (1994) Hydrodynamics of polymer solutions via two-parameter scaling. J Phys II France 4(8):1299–1310

    CAS  Google Scholar 

  • de Gennes PG (1979) Scaling concepts in polymer physics. Cornell University Press

    Google Scholar 

  • Dobrynin AV, Jacobs M, Sayko R (2021) Scaling of polymer solutions as a quantitative tool. Macromolecules 54(5):2288–2295

    CAS  Google Scholar 

  • Doi M (1981) Explanation for the 3.4 power law of viscosity of polymeric liquids on the basis of the tube model. J Polym Sci: Polym Lett Ed 19(5):265–273

    CAS  Google Scholar 

  • Doi M, Edwards SF (1986) The theory of polymer dynamics. Oxford University Press

    Google Scholar 

  • Dreval VE, Malkin AY, Botvinnik GO (1973) Approach to generalization of concentration dependence of zero-shear viscosity in polymer solutions. J Polym Sci: Polym Phys Ed 11(6):1055–1076

    CAS  Google Scholar 

  • Ebagninin KW, Benchabane A, Bekkour K (2009) Rheological characterization of poly(ethylene oxide) solutions of different molecular weights. J Colloid Interface Sci 336(1):360–367

    CAS  Google Scholar 

  • Farnoux B, Boue F, Cotton JP, Daoud M, Jannink G, Nierlich M, De Gennes PG (1978) Cross-over in polymer solutions. J Phys France 39(1):77–86

    CAS  Google Scholar 

  • Ferry JD (1980) Viscoelastic Properties of Polymers. Wiley

    Google Scholar 

  • Fujita H (1961) Diffusion in polymer-diluent systems. Adv Polym Sci 3:1–47

  • Gandhi KS, Williams MC (1971) Solvent effects on viscosity of moderately concentrated polymer solutions. J Polym Sci Part C-Polym Symposium 35:211

    Google Scholar 

  • Graessley WW (1974) The entanglement concept in polymer rheology. Adv. Polym. Sci. 16;1–179

    Google Scholar 

  • Graessley WW (1980) Polymer chain dimensions and the dependence of viscoelastic properties on concentration, molecular weight and solvent power. Polymer 21(3):258–262

    CAS  Google Scholar 

  • Graessley WW (2008) Polymeric liquids and networks: dynamics and rheology. Garland Science

    Google Scholar 

  • He X, Kong M, Niu Y, Li G (2020) Entanglement and relaxation of poly(methyl methacrylate) chains in imidazolium-based ionic liquids with different cationic structures. Macromolecules 53(18):7865–7875

    CAS  Google Scholar 

  • Heo Y, Larson RG (2008) Universal scaling of linear and nonlinear rheological properties of semidilute and concentrated polymer solutions. Macromolecules 41(22):8903–8915

    CAS  Google Scholar 

  • Hong F, Lu Y, Li J, Shi W, Zhang G, Wu C (2010) Revisiting of dimensional scaling of linear chains in dilute solutions. Polymer 51(6):1413–1417

    CAS  Google Scholar 

  • Indei T, Narita T (2022a) Microrheological study of single chain dynamics in semidilute entangled flexible polymer solutions: Crossover from Rouse to Zimm modes. J Rheol 66(6):1165–1179

    CAS  Google Scholar 

  • Indei T, Narita T (2022b) Discussion of Microrheological study of single chain dynamics in semidilute entangled flexible polymer solutions: Crossover from Rouse to Zimm modes. J Rheol 66(6):1181

    Google Scholar 

  • Jamieson AM, Telford D (1982) Newtonian viscosity of semidilute solutions of polystyrene in tetrahydrofuran. Macromolecules 15(5):1329–1332

    CAS  Google Scholar 

  • Kassapidou K, Jesse W, Kuil ME, Lapp A, Egelhaaf S, van der Maarel JRC (1997) Structure and Charge Distribution in DNA and Poly(styrenesulfonate) Aqueous Solutions. Macromolecules 30(9):2671–2684

    CAS  Google Scholar 

  • Kulicke WM, Kniewske R (1984) The shear viscosity dependence on concentration, molecular weight, and shear rate of polystyrene solutions. Rheol Acta 23(1):75–83

    CAS  Google Scholar 

  • Masuda T, Toda N, Aoto Y, Onogi S (1972) Viscoelastic properties of concentrated solutions of poly(methyl methacrylate) in diethyl phthalate. Polym J 3(3):315–321

    CAS  Google Scholar 

  • Milner ST (2005) Predicting the tube diameter in melts and solutions. Macromolecules 38(11):4929–4939

    CAS  Google Scholar 

  • Parisi D, Ditillo CD, Han A, Lindberg S, Hamersky MW, Colby RH (2022) Rheological investigation on the associative properties of poly(vinyl alcohol) solutions. J Rheol 66(6):1151–1152

    Google Scholar 

  • Raspaud E, Lairez D, Adam M (1995) On the number of blobs per entanglement in semidilute and good solvent solution: melt influence. Macromolecules 28(4):927–933

    CAS  Google Scholar 

  • Rawiso M, Duplessix R, Picot C (1987) Scattering function of polystyrene. Macromolecules 20(3):630–648

    CAS  Google Scholar 

  • Roy-Chowdhury P, Deuskar VD (1984) Effect of solvent, concentration, and molecular weight on the rheological properties of polymer solutions. J Appl Polym Sci 29(1):153–173

    CAS  Google Scholar 

  • Roy-Chowdhury P, Deuskar VD (1986) Rheological properties of concentrated polymer solution: Polybutadiene in good and θ solvents. J Appl Polym Sci 31(1):145–161

    CAS  Google Scholar 

  • Rubinstein M, Colby RH (2003) Polymer Physics. Oxford University Press

    Google Scholar 

  • Rubinstein M, Semenov AN (2001) Dynamics of entangled solutions of associating polymers. Macromolecules 34(4):1058–1068

    CAS  Google Scholar 

  • Simha R, Utracki LA (1973) The viscosity of concentrated polymer solutions: corresponding states principles. Rheol Acta 12(3):455–464

    CAS  Google Scholar 

  • Simha R, Zakin JL (1962) Solution viscosities of linear flexible high polymers. J Colloid Sci 17(3):270–287

    CAS  Google Scholar 

  • Tamai Y, Konishi T, Einaga Y, Fujii M, Yamakawa H (1990) Mean-square radius of gyration of oligo- and poly(methyl methacrylate)s in dilute solutions. Macromolecules 23(18):4067–4075

    CAS  Google Scholar 

  • Weissberg SG, Simha R, Rothman S (1951) Viscosity of dilute and moderately concentrated polymer solutions. J Res Natl Bureau Stand 47(4):298–314

    Google Scholar 

  • Yan Z-C, Zhang B-Q, Liu C-Y (2014) Dynamics of concentrated polymer solutions revisited: isomonomeric friction adjustment and its consequences. Macromolecules 47(13):4460–4470

    CAS  Google Scholar 

Download references

Funding

The authors thank the National Science Foundation for support through Chemistry-2203746. We also thank Carlos Lopez for many useful comments on this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph H. Colby.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colby, R.H., Han, A. Specific viscosity of polymer solutions with large thermal blobs. Rheol Acta 62, 687–693 (2023). https://doi.org/10.1007/s00397-023-01419-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-023-01419-7

Keywords

Navigation