Skip to main content
Log in

A comparison of experimental measurements and theoretical predictions regarding the behavior of a turbulent argon plasma jet discharging into air

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Computed results are presented describing the temperature and concentration fields obtained when an argon plasma jet is being discharged into ambient air. A previously published mathematical model for turbulent plasma plumes is used for the calculations. These predictions are compared with recent), published experimental measurements by Brossa and Pfender, performed with an enthalpy probe. The theoretical predictions appear to agree reasonably well with the measurements of both the temperature and concentration profiles, with a maximum deviation in the 10–20% range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A max :

maximum temperature or velocity in the torch exit profile

C 1 C 2 C D :

constants inK-ε model

h :

enthalpy

I :

torch current

K :

turbulent kinetic energy per unit mass

m :

mass concentration of plasma p pressure

Q :

How rate of argon through the torch

r :

radial coordinate

r n :

nozzle radius (inside)

S θ :

source term for dependent variable θ

References

  1. C. P. Donaldson and K. E. Gray,AIAA J. 4, 2017 (1966).

    Google Scholar 

  2. I. P. Incropera and G. Leppert,Int. J. Heat Mass Transfer 10, 1861 (1967).

    Google Scholar 

  3. J. F. Schaeffer,AIAA J 16, 1068 (1978).

    Google Scholar 

  4. S. M. Correa, 6th Int. Symp. on Plasma Chemistry, Montreal, July 24–28, Vol. 1, (1983).

  5. J. McKelliget, J. Szekely, M. Vardelle, and P. Fauchais,Plasma Chem. Plasma Process.2, 317 (1982).

    Google Scholar 

  6. A. H. Dilawari and J. Szekely,Plasma Chem. Plasma Process.7, 317 (1987).

    Google Scholar 

  7. A. H. Dilawari and J. Szekely,Int. J. Heat Mass Transfer 30, 2357 (1987).

    Google Scholar 

  8. A. H. Dilawari and J. Szekely,Mater. Res. Symp. Proc. 98, 3 (1987).

    Google Scholar 

  9. A. H. Dilawari, J. Szekely, J. Batdorf, and C. B. Shaw,Plasma Chem. Plasma Process.10, 323 (1990).

    Google Scholar 

  10. A. H. Dilawari, J. Szekely, J. F. Coudert, and P. Fauchais,Int. J. Heat Mass Transfer 32, No. 1, 35 (1989).

    Google Scholar 

  11. Y. P. Chyou and E. Pfender,Plasma Chem. Plasma Process.9, 291 (1989).

    Google Scholar 

  12. M. Brossa and E. Pfender,Plasma Chem. Plasma Process.8, 75 (1988).

    Google Scholar 

  13. B. E. Launder and D. B. Spalding,Mathematical Models of Turbulence, Academic Press, London (1972).

    Google Scholar 

  14. W. M. Pun and D. B. Spalding, Rep. No. HTS/76/2, Heat Transfer Section, Imperial College, London (1976).

    Google Scholar 

  15. J. C. Morris, G. R. Bach, and J. M. Yos, Rep. No. ARL-64–180, Aerospace Research Laboratories (1964).

  16. C. H. Liu, Ph.D. Thesis, Department of Mechanical Engineering, Univ. of Minnesota, Minneapolis, Minnesota (1977).

  17. J. M. Yos, Technical Memorandum RAD-TM-63–7, Research and Advanced Development Division, AVCO Corporation, Wilmington, Massachusetts (1983).

    Google Scholar 

  18. D. C. Evans and R. S. Tankin,Phys. Fluids 10, 1137 (1967).

    Google Scholar 

  19. C. R. Wilke,J. Chem. Phys. 18, 517–519 (1950).

    Google Scholar 

  20. P. Fauchais, M. Boulos, and E. Pfender, Physical and Thermodynamic Properties of Thermal Plasmas, in Plasma Technology, in Metallurgical Processing, Iron and Steel Society, Warrendale, Pennsylvania (1987), pp. 11–26.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dilawari, A.H., Szekely, J. & Westhoff, R. A comparison of experimental measurements and theoretical predictions regarding the behavior of a turbulent argon plasma jet discharging into air. Plasma Chem Plasma Process 10, 501–513 (1990). https://doi.org/10.1007/BF01447261

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01447261

Key words

Navigation