Skip to main content
Log in

Influence of nonishothermicity on drag coefficient of a spherical Al particle in a plasma

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Experimental results of drag coefficient measurements of spherical Al particles with diameter 100–300 μm in an electric-arc argon plasma for Re ynolds numbers 0.4-10, Mach numbers 0.05 in a plasmatron channel with an intersection cavity for an arc current of 75–190A, gas flow rate 0.2–2.75g/.sec, and channel radius 0.75–1.5cm are reported. Plasma flow characteristics obtained using MHD equations are used for treatment of experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Schlichting, Boundary Layer Theory, McGraw-Hill, New York (1968).

    Google Scholar 

  2. L. E. Sternin,Fundamentals of Gas Dynamics of Two-Phase Flows in Nozzles [in Russian] Mashinostroenie Press, Moscow (1974).

    Google Scholar 

  3. E. Seymour, “The hydrodynamic drag on a small sphere in an ionized gas,”Pap. ASME, pp 1–10 (1971 ).

  4. J. A. Lewis and W. H. Gauvin,AIChE J. 19, 982–990 (1973).

    Google Scholar 

  5. M. K. Asanaliev et al., “Measurement of coefficient of sphere aerodynamic drag in argon plasma,” Proc.15 Int. Phenom. Ionized Gases, Minsk, 1981, Contrib. Pap., Part 11, pp.959–960.

  6. V. V. Kabanov and V. S. Klubnikin,Inzh. Fiz. Zh. 48, 396–402 (1985).

    Google Scholar 

  7. E. Pfender and Y. C. Lee,Plasma Chem. Plasma Process. 5, 221–236 (1985).

    Google Scholar 

  8. M. K. Asanaliev et al.,Fiz. Khim. Obrab. Mater., No. 3, 65–71 (1978).

  9. Ju. V. Svetkov and S. A. Panfilov,Low-Temperature Plasmas in Reduction Processes [in Russian] Nauka Press, Moscow (1980), p. 360.

    Google Scholar 

  10. E. I. Asinovskii, E. P. Pahomov, and I. M. Jartsev,Teplofiz. Vys. Temp. 16, 28–36 (1978).

    Google Scholar 

  11. M. K. Asanalievet al., Numerical Analyses of the Characteristics of Plasma Flow in a Plasmalron Channel with an Intersection Cavity [in Russian] Ilim Press, Frunze (1987).

    Google Scholar 

  12. A. D. Gosman, et al.,Numerical Methods of Studying Viscous Liquid Flow [Russian translation] Mir Press, Moscow (1984).

    Google Scholar 

  13. V. M. Paskonov, V. I. Polezhaev, and L. A. Chudov,Numerical Modeling of Heat and Mass Transfer Processes [in Russian] Nauka Press, Moscow (1984).

    Google Scholar 

  14. A. N. Prokofiev,Izv. Vyssh. Uchebn. Zaved., No. 2, pp. 58–62 (1977).

  15. A. S. Korneev, N. P. Nazarenko, and 1. G. Panevin, in Eighth All-Union Conference on Generation of Low-Temperature Plasmas, Novosibirsk, 1980, Vol. 1, pp. 85–88.

  16. A. Zhainakovet al., inProblems in Atomic Spectral Analysis [in Russian], Frunze (1977), No. 1, pp. 19–63.

  17. V. S. Engels, ed.,Mathematical Modeling of Electric Arcs, [in Russian] Ilim Press, Frunze (1983).

    Google Scholar 

  18. D. Baum, J. Hackman, and J. Uhlenbush,Plasma Phys. 17, 79–87 (1975).

    Google Scholar 

  19. K. Drellishak, “Partition function and thermodynamic properties of high-temperature gases, AEDC, NAD-428210,10, No. 1 (1964).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asanaliev, M.K., Zheenbaev, Z.Z., Leliovkin, V.M. et al. Influence of nonishothermicity on drag coefficient of a spherical Al particle in a plasma. Plasma Chem Plasma Process 11, 269–286 (1991). https://doi.org/10.1007/BF01447246

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01447246

Key words

Navigation