Skip to main content
Log in

Effect of particle charging on momentum and heat transfer from rarefied plasma flow

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The features of interaction of a spherical metallic particle with a rarefied thermal plasma flow due to the presence o charges-electrons and ions in the gaseous phase-are considered. Analytical expressions describing charge, momentum, and energy exchange between the plasma and the particle für the cases of strong and weak Debye screening are obtained. It is illustrated that the efficiency of particle heating in the plasma considerably grows as compared with a hot molecular gas due to participation of electrons and ions in file transfer processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C :

heat capacity

e :

electron charge

E i :

ionization energy

f :

velocity distribution function

F :

drag force

I :

flux of number of plasma species

k B :

Boltzmann constant

Kn:

Knudsen number

l :

mean free path m mass

M :

Mach number

N :

number density P pressure

Q :

heat flux

r :

spatial coordinate

r D :

Debye length

R p :

radius of the particle

s p :

particle surface area

S :

speed ratio

t :

time

T :

temperature

U :

interaction energy

v :

plasma species velocity

V :

plasma flow, particle velocity

x,Y,z :

Cartesian coordinate system associated with particle surface

X P :

coordinate of particle in plasma jet

y f :

dimensionless floating potential

γ :

ratio of specific heats

ν :

ionization degree

θ :

vectorial angle

ζ :

impact parameter

ϱ :

density

φ :

potential

Φ :

work function

Ψ :

scattering angle

a :

molecules (atoms)

e :

electrons

i :

ions

g :

plasma (gas)

h :

heavy plasma species (molecules and ions)

p :

metallic particle

s :

surface

∞:

value in nondisturbed region of plasma far from particle

+:

direction from particle

−:

direction to particle

References

  1. R. M. Young and E. Pfender,Plasma Chem. Plasma Process. 5, 1 (1985).

    Google Scholar 

  2. T. Yoshida and K. Akashi,J. Appl. Phys. 48, 2252 (1977).

    Google Scholar 

  3. E Bourdin, P. Fauchais, and M. Boulos,Int. J. Heat Mass Transfer 26, 567 (1983).

    Google Scholar 

  4. X. Chen and E. Pfender,Plasma Chem. Plasma Process. 3, 97 (1983).

    Google Scholar 

  5. M. Vardelle, A. Vardelle, P. Fauchais, and M. Boulos,AIChE J. 29, 236 (1983).

    Google Scholar 

  6. P. Proulx, J. Mostaghimi, and M. I. Boulos,Plasma Chem. Plasma Process. 7, 29 (1987).

    Google Scholar 

  7. C. Borgianni, M. Capitelli, F. Cramarossa, L. Triolo, and E. Molinari,Combust. Flame 13, 181 (1969).

    Google Scholar 

  8. I. V. Kalganova and V. S. Klubnikin,Teplofiz. Vys. Temp. 14, 408 (1976) [High Temp. 14, 369 (1976)].

    Google Scholar 

  9. D. I. Zhukhovitskii, A. G. Khrapak, and I. T. Yakubov,Teplofiz. Vys. Temp. 22, 833 (1984).

    Google Scholar 

  10. N. N. Rykalin, A. A. Uglov, Yu. N. Lokhov, and A. G. Gnedovets,Teplofiz. Vys. Temp. 19, 557 (1981) [High Temp. 19, 404 (1981)].

    Google Scholar 

  11. A. A. Uglov, A. G. Gnedovets, and Yu. N. Lokhov,Fiz. Khim. Obrab. Mater., No. 6, 17 (1981).

  12. A. A. Uglov, A. G. Gnedovets, and Yu. N. Lokhov,Teplofiz. Vys. Temp. 20, 621 (1982).

    Google Scholar 

  13. A. A. Uglov and A. G. Gnedovets,Dokl. Akad. Nauk SSSR 272, 104 (1983) [Sov. Phys. Dokl. 28, 792 (1983)].

    Google Scholar 

  14. Y. C. Lee, Y. P. Chyou, and E. Pfender,Plasma Chem. Plasma Process. 5, 391 (1985).

    Google Scholar 

  15. X. Chen and P. He,Plasma Chem. Plasma Process. 6, 313 (1986).

    Google Scholar 

  16. A. A. Uglov, A. G. Gnedovets, and I. Yu. Smurov, “Heat and mass transfer during treatment of particles in plasma flows,”Proceedings of the International Workshop on High Temperature Dust-Laden Jets in the Processes of Treatment of Powder Materials, (Akademgorodok, Novosibirsk, September 1988), p.44.

    Google Scholar 

  17. G. A. Bird,Molecular Gas Dynamics, Clarendon Press, Oxford (1976).

    Google Scholar 

  18. P. M. Chung, L. Talbot, and K. J. Touryan,AIAA J. 12, 133 (1974).

    Google Scholar 

  19. C. L. Brundin,AIAA J. 1, 2529 (1963).

    Google Scholar 

  20. E. W. McDaniel,Collision Phenomena in Ionized Gases, Wiley, New York-London-Sydney (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uglov, A.A., Gnedovets, A.G. Effect of particle charging on momentum and heat transfer from rarefied plasma flow. Plasma Chem Plasma Process 11, 251–267 (1991). https://doi.org/10.1007/BF01447245

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01447245

Key words

Navigation