Skip to main content
Log in

Quadrupole mass spectrometric study of positive ions from RF plasmas of pure CH4, CH4/H2, and CH4/Ar systems

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Quadrupole mass spectrometry has been employed to characterize the ionic species in the discharges of pure CH4, CH4/H2, and CH4/Ar systems. For pure methane, the major positive ions in the discharge at low pressure (e.g., 0.15 torr) are CH +3 , C2H +3 , CH +2 , C2H +2 , CH +4 , C2H +4 , and C2H +5 at high pressure (e.g., 0.5 torr) the major ions are CH +3 , C2H +3 , C2H +5 , C3H +3 , C H3H +7 , C4H +7 , C5H +7 , C6H +5 , and C7H +7 . The relative abundances of C1 ions decrease with increasing pressure, whereas those of higher-order ions increase with pressure. For 5% CH4 + 95% H2 mixture, in addition to those sampling from the pure methane plasma at the lower pressure, H + n ions have also been detected. For 5% CH4 +95% Ar mixture, the principal ions are CH +3 , CH +2 , CH+, CH +5 , Ar+, and ArH+; the ions containing more than two carbon atoms are negligible. In these discharges, the CH +3 and C2H +3 are the most important positive ions in C1 and C2 ions, respectively. The ions detected are believed to come from the sheath between the electrode and the luminous plasma, and have high kinetic energy. An ion-molecule reaction mechanism is proposed which can well explain the observed main features of ionic products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. C. Angus, P. Koidl, and S. Domitz, inPlasma Deposited Thin Films, J. Mort and F. Jansen, eds., CTC, Boca Raton, Florida (1986), p.89.

    Google Scholar 

  2. S. Berg and L. P. Andersson,Thin Solid Films 58, 273 (1979).

    Google Scholar 

  3. A. Bubenzer, B. Dischler, G. Brandt, and P. Koidl,J. Appl. Phys. 54, 4590 (1983).

    Google Scholar 

  4. Y. Catherine and P. Couderc,Thin Solid Films 144, 265 (1986).

    Google Scholar 

  5. K. Suzuki, A. Sawabe, H. Yasuda, and T. Inuzuka,Appl. Phys. Lett. 50, 728 (1987).

    Google Scholar 

  6. M. Kamo, Y. Sato, S. Matsumoto, and N. Setaka,J. Cryst. Growth 62, 642 (1983).

    Google Scholar 

  7. G. Amaratunga, A. Putnis, K. Clay, and W. Milne,Appl. Phys. Lett. 55, 634 (1989).

    Google Scholar 

  8. W. Zhang and Y. Catherine,Surf. Coating Technol. (1991), in press.

  9. R. Koenig and L. I. Maissel,IBM J. Res. Dev. 14, 168 (1970).

    Google Scholar 

  10. W. Coburn and E. Kay,J. Appl. Phys. 43, 4986 (1972).

    Google Scholar 

  11. R. Robertson and A. Gallagher,J. Appl. Phys. 59, 3402 (1986).

    Google Scholar 

  12. K. Kojima, H. Toyoda, and H. Sugai,Appl. Phys. Lett. 55, 1292 (1989).

    Google Scholar 

  13. H. Toyoda, K. Kojima, and H. Sugai,Appl. Phys. Lett. 54, 1507 (1989).

    Google Scholar 

  14. J. Perrin, A. Lloret, J. P. M. Schmitt, and G. de Rosny,Int. J. Mass Spectrom. Ion Phys. 57, 249 (1984).

    Google Scholar 

  15. G. Smolinsky and M. Vasile,J. Macromol. Sci.-Chem. A10, 476 (1976).

    Google Scholar 

  16. M. Vasile and G. Smolinsky,Int. J. Mass. Spectrom. Ion Phys. 18, 179 (1975).

    Google Scholar 

  17. F. H. Field, J. L. Franklin, and M. S. B. Munson,J. Am. Chem. Soc. 85, 3575 (1963).

    Google Scholar 

  18. G. Smolinsky and M. Vasile,Int. J. Mass Spectrom. Ion Phys. 16, 137 (1975).

    Google Scholar 

  19. S. A. Studniarz and J. L. Franklin,J. Chem. Soc. 49, 2652 (1968).

    Google Scholar 

  20. W. T. Huntress, Jr. and R. F. Pinizzotto,J. Chem. Soc. 59, 4742 (1973).

    Google Scholar 

  21. D. Smith and N. G. Adams,Int. J. Mass Spectrom. Ion Phys. 23, 123 (1977).

    Google Scholar 

  22. D. L. Albritton,At. Data Nucl. Data Tables 22, 1 (1978).

    Google Scholar 

  23. K. Tachibana, M. Nishida, H. Harima, and Y. Urano,J. Phys. D 17, 1727 (1984).

    Google Scholar 

  24. C. E. Melton and P. S. Rodulph,J. Chem. Phys. 47, 1771 (1967).

    Google Scholar 

  25. C. E. Melton,J. Chem. Phys. 33, 647 (1960).

    Google Scholar 

  26. F. H. Field and M. S. B. Munson,J. Am. Chem. Soc. 87, 3575 (1965).

    Google Scholar 

  27. F. P. Abramson and J. H. Futrell,J. Chem. Phys. 45, 1925 (1966).

    Google Scholar 

  28. J. H. Futrell and T. O. Tierman, inFundational Processes in Radiation Chemistry P. Ausloos, ed., Interscience, New York (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Died June 1, 1991.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, W., Catherine, Y. Quadrupole mass spectrometric study of positive ions from RF plasmas of pure CH4, CH4/H2, and CH4/Ar systems. Plasma Chem Plasma Process 11, 473–488 (1991). https://doi.org/10.1007/BF01447160

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01447160

Key words

Navigation