Skip to main content
Log in

Electrode erosion in plasma torches

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Cathode erosion rates are reported (or copper electrodes in a simulated plasma torch operating at atmospheric pressure. The are current was 100A (or most experiments; the magnetic field used to move the arc varied between 0.001 and 0.15 T. Different plasma gases were used (Ar, He, air, N2, CO, and mixtures of the noble gases with O2, N2, CO, CH4, Cl2, and H2S) at flow rates varying between 0.2 and 20 liters/min. Different criteria (arc velocity, arc attachment residence time, arc current density) were used to analyze the erosion results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. M. Lehr and M. Kristiansen,IEEE Trans. Plasma Sci. 17, 811–817 (1989).

    Google Scholar 

  2. A. E. Guile and A. H. Hitchcock,J. Phys. D: Appl. Phys. 7, 597–606 (1974).

    Google Scholar 

  3. J. E. Harry,J. Appl. Phys. 40, 265–270 (1969).

    Google Scholar 

  4. A. H. Hitchcock and A. E. Guile, “Erosion of copper cathodes by moving arcs at currents of 45-800 A,”Proc. IEE,122, 763–764 (1975).

    Google Scholar 

  5. A. E. Guile and A. H. Hitchcock, “Effect of water cooling on erosion of the copper cathode of a rotating arc,”Proc. IEE 122, 579–580 (1975).

    Google Scholar 

  6. A. E. Guile and A. H. Hitchcock, “Effect of transverse magnetic field on erosion rate of cathodes of rotating arcs,”Proc. IEE 128, 117–122 (1981).

    Google Scholar 

  7. A. H. Hitchcock and A. E. Guile, “Effect of copper oxide thickness on the number and size of arc-cathode emitting sites,”Proc. IEE 124, 148–152 (1977).

    Google Scholar 

  8. A. E. Guile and A. H. Hitchcock,J. Appl. Phys. 49, 4275–4276 (1978).

    Google Scholar 

  9. R. N. Szente, R. J. Munz, and M. G. Drouet,Plasma Chem. Plasma Proc. 7, 349–364 (1987).

    Google Scholar 

  10. A. P. George and A. L. Hare, “Arc heater operating characteristics on oxygen and nitrogen, an interim report,” Proc. ISPC-6, IUPAC, Montreal, Paper A-5-2, (1983), pp. 144–147.

  11. D. R. Porto, C. W. Kimblin, and D. T. Tuma,J. Appl. Phys. 53, 4740–4749 (1982).

    Google Scholar 

  12. R. N. Szente, R. J. Munz, and M. G. Drouet,J. Phys. D: Appl. Phys. 23, 1193–1200 (1990).

    Google Scholar 

  13. R. N. Szente, R. J. Munz, and M. G. Drouet,J. Appl. Phys. 69, 1263–1268 (1991).

    Google Scholar 

  14. I. G. Kesaev,Soc. Phys. Tech. Phys. 8, 447–456 (1963).

    Google Scholar 

  15. C. Herring and M. H. Nichols,Rev. Mod. Phys. 21, 185–270 (1949).

    Google Scholar 

  16. L. P. Harris, “Arc Cathode Phenomena,”Vacuum Arcs-Theory and Application, J. M. Lafferty, ed., Wiley, New York (1980).

    Google Scholar 

  17. J. Miterrauer, “Cathode erosion in highly transient cold cathode arc spots,” Proc. 12th International Conference on Phenomena in Ionized Gases, Eindhoven (1975), pp. 248–253, North-Holland Pub. Co., Amsterdam.

    Google Scholar 

  18. P. P. Kislink, “Arcing at telephone relay contacts,” Bell Lab. Rec.34, pp. 218–222 (1956).

    Google Scholar 

  19. P. R. Emtage,J. Appl. Phys. 46, 3809–3814 (1975).

    Google Scholar 

  20. M. G. Drouet and S. Gruber, “Dynamic measurements of cathodic emission in a moving arc,”IEEE Trans. Power Appl. Syst. PAS-95, 105–112 (1976).

    Google Scholar 

  21. J. E. Daalder, “Diameter and current density of single and multiple cathode discharges in vacuum,”IEEE Trans. Power Appl. Syst. PAS-93, 1747–1759 (1974).

    Google Scholar 

  22. B. E. Djakov and R. Holmes,J. Phys. D: Appl. Phys. 4, 504–509 (1971).

    Google Scholar 

  23. J. Prock, “Time-dependent description of cathode crater formation in vacuum arcs.”IEEE Trans. Plasma Sci. PS-14, 482–496 (1986).

    Google Scholar 

  24. E. Hantzsche, “On the heat sources of the arc cathode spot,”Plasmaphysick 2, 59–79 (1979).

    Google Scholar 

  25. J. Miterrauer and P. Till, “Computer simulation of the dynamics of plasma surface interaction in vacuum arc cathode spots,”IEEE Trans. Plasma Sci. PS-15, 488–500 (1987).

    Google Scholar 

  26. J. E. Daalder,J. Phys. D: Appl. Phys. 11, 1667–1683 (1978).

    Google Scholar 

  27. B. Juttner,J. Phys. D: Appl. Phys. 14, 1265–1275 (1981).

    Google Scholar 

  28. R. N. Szente, R. J. Munz, and M. G. Drouet,J. Phys. D: Appl. Phys. 20, 754–756 (1987).

    Google Scholar 

  29. E. Hantzsche,Physica C 104, 3–16 (1981).

    Google Scholar 

  30. V. I. Rakhovsky, “Experimental study of the dynamics of cathode spots,”IEEE Trans. Plasma Sci. PS-4, 81–102 (1974).

    Google Scholar 

  31. J. Achter, B. Altrichter, B. Juttner, P. Pech, H. Pursch, H. D. Reiner, W. Rohrbeck, P. Siemoth, and H. Wolff,Plasma Phys. 17, 419–431 (1977).

    Google Scholar 

  32. P. R. Emtage, J. G. Gorman, J. V. R. Heberlein, F. A. Holmes, C. W. Kimblin, P. G. Slade, and R. E. Voxhall, “The interaction of vacuum arcs with transverse magnetic field,” Proc. 13th International Conference on Phenomena in Ionized Gases, Swansea (1977), 673–674, The Institution of Electrical Engineers.

  33. D. Y. Fang, “On the lateral spread of moving cathode spot of vacuum arcs in a transverse magnetic field,” Proc. 16th International Conference on Phenomena in Ionized Gases, (1983) pp. 276–277.

  34. B. Juttner,J. Phys. D: Appl. Phys. 14, 1265–1275 (1981).

    Google Scholar 

  35. M. G. Drouet, “The physics of the retrograde motion of the electric arc,”IEEE Trans. Plasma Sci. PS-13 235–241 (1985).

    Google Scholar 

  36. R. N. Szente, “Cathode erosion in magnetically rotated arcs,” M. Eng. Thesis, McGill University, Montreal, Canada (1986).

    Google Scholar 

  37. R. N. Szente, M. G. Drouet, and R. J. Munz, “Method to measure current distribution of an electric arc at the surface of plasma torch electrodes,”Rev. Sci. Instrum. 61, 1259–1262 (1990).

    Google Scholar 

  38. R. N. Szente, “Erosion of plasma torch electrodes,” Ph.D. Thesis, McGill University, Montreal, Canada (1989).

    Google Scholar 

  39. R. N. Szente, R. J. Munz, and M. G. Drouet,Plasma Chem. Plasma Proc. 9, 121–132 (1989).

    Google Scholar 

  40. R. N. Szente, R. J. Munz, and M. G. Drouet, “Spatial and temporal chemical composition variations in a copper cathode and their correlation with arc characteristics and erosion rates,“ 9th Int. Conf. Gas Discharge, Vol. 1, Venice, Italy (1988) pp. 67–79, The Institution of Electrical Engineers.

  41. J. D. Cobine, “Vacuum arc anode phenomena,” inVacuum Arcs—Theory and Applications, J. M. Lafferty, ed., Wiley, New York (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szente, R.N., Munz, R.J. & Drouet, M.G. Electrode erosion in plasma torches. Plasma Chem Plasma Process 12, 327–343 (1992). https://doi.org/10.1007/BF01447029

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01447029

Key words

Navigation