Skip to main content
Log in

Critical analysis of viscosity data of thermal argon plasmas at atmospheric pressure

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Reliable values of the viscosity in thermal argon plasmas are most important for our understanding of the momentum transfer and for realistic modeling of various plasma applications. Despite numerous attempts to determine reliable viscosity values over the last three decades, discrepancies still exist among the data reported by different authors. In this paper, a critical analysis is undertaken of calculated and experimental data of the argon viscosity based on recent publications. Our recalculation of viscosities in thermal argon plasmas are performed by using Lennard-Jones, Morse, Aziz, and exponential repulsive potentials for Ar-Ar atom interactions in different temperature ranges from 300 to 20,000 K. The contributions of elastic collisions of e-Ar, e-Ar+, and Ar+-Ar, as well as charge exchange of Ar+-Ar, to the viscosity become important with increasing temperature and degree of ionization in argon plasmas. Based on a critical analysis and recalculations, improved values of the argon viscosity are recommended, covering temperatures from 300 to 20,000 K. Polynomial expressions have been developed for calculating argon viscosities, which will be useful for numerical work and other applications of thermal argon plasmas at atmospheric pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. R. Lide and H. V. Kehiaian,CRC Handbook of Thermophysical and Thermochemical Data, CRC Press, Boca Raton, Florida (1994).

    Google Scholar 

  2. G. C. Maitland and E. B. Smith,J. Chem. Eng. Data 17, 150 (1972).

    Google Scholar 

  3. E. Bich, J. Millat, and E. Vogel,J. Phys. Chem. Ref. Data 19, 1289–1305 (1990).

    Google Scholar 

  4. N. B. Vargaftik,Handbook of Physical Properties of Liquids and Gases: Pure Substances and Mixtures, 2nd edn., Hemisphere Publishing Corp., Washington, New York, London (1983).

    Google Scholar 

  5. M. I. Boulos, P. Fauchais, and E. Pfender,Thermal Plasmas, Fundamentals and Applications, Vol. 1, Plenum Press, New York (1994).

    Google Scholar 

  6. R. A. Dawe and E. B. Smith,J. Chem. Phys. 52, 693 (1970).

    Google Scholar 

  7. M. N. Bahadori and S. L. Soo,Int. J. Heat Mass Transfer 9, 17 (1966).

    Google Scholar 

  8. E. I. Ansinovskii and E. P. Pakhomov,High Temp. 5, 859 (1967).

    Google Scholar 

  9. S. V. Dresvin,Physics and Technology of Low-Temperature Plasmas, The Iowa State University Press, Ames, Iowa (1977).

    Google Scholar 

  10. A. Kanzawa and I. Kimura,AIAA J. 5, 1315 (1967).

    Google Scholar 

  11. D. P. Aeschliman and A. B. Cambel,Phys. Fluids 13, 2466 (1970).

    Google Scholar 

  12. R. S. Devoto,Phys. Fluids 18, 616 (1973).

    Google Scholar 

  13. A. A. Clifford, P. Gray, and N. Platts,J. Chem. Soc. Faraday Trans. 73, 381 (1977).

    Google Scholar 

  14. J. A. Kunc,J. Chem. Phys. 99, 4705 (1993).

    Google Scholar 

  15. B. Pateyron, M.-F. Elchinger, G.Delluc, and P. Fauchais,Plasma Chem. Plasma Process.12, 421 (1992).

    Google Scholar 

  16. A. B. Murphy and C. J. Arundell,Plasma Chem. Plasma Process.14, 451 (1994).

    Google Scholar 

  17. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird,Molecular Theory of Gases and Liquids, 2nd edn., Wiley, New York (1964).

    Google Scholar 

  18. S. Chapman and T. G. Cowling,Mathematical Theory of Non-uniform Gases, 3rd edn., Cambridge University Press, London (1970).

    Google Scholar 

  19. L. A. Viehland, A. R. Janzen, and R. A. Aziz,J. Chem. Phys. 102, 5444 (1995).

    Google Scholar 

  20. W. L. T. Chen, J. Heberlein, E.Pfender, B. Pateyron, G. Delluc, M.-F. Elchinger, and P. Fauchais,Plasma Chem. Plasma Process.15, 559 (1995).

    Google Scholar 

  21. G. C. Maitland, M. Rigby, E. B. Smith, and W. A. Wakeham,Intermolecular Forces, Clarendon Press, Oxford (1981).

    Google Scholar 

  22. R. A. Aziz, “Interatomic potentials for rare-gases: pure and mixed interaction,”Inert Gases, Springer Series in Chemical Physics, L. Klein, ed., Springer-Verlag, Berlin (1984), Vol. 34, pp. 5–86.

    Google Scholar 

  23. E. A. Mason and E. W. McDaniel,Transport Properties of Ions in Gases, Wiley, New York (1988).

    Google Scholar 

  24. W. Aretz, S. Metz, and H. Wilhelmi, “Thermodynamic and transport properties of dissociating combustion gases,” private communication, November (1993).

  25. R. A. Aziz and H. H. Chen,J. Chem. Phys. 67, 5719 (1977).

    Google Scholar 

  26. R. A. Aziz and M. J. Slaman,J. Chem. Phys. 92, 1030 (1990).

    Google Scholar 

  27. R. A. Aziz,J. Chem. Phys. 99, 4518 (1993).

    Google Scholar 

  28. G. Sejkora, P. Girstmair, H. C. Bryant, and T. D. Mark,Phys. Rev. A29, 3379 (1984).

    Google Scholar 

  29. J. Aubreton and P. Fauchais,Rev. Phys. Appl. 18, 51 (1983).

    Google Scholar 

  30. J. Aubreton, C. Bonnefoi, and M. Mexmain,Rev. Phys. Appl. 21, 365 (1986).

    Google Scholar 

  31. J. T. Moseley, R. P. Saxon, B. A. Huber, P. C. Cosby, R. Abouaf, and M.Tadjeddine,J. Chem. Phys. 67, 1659 (1977).

    Google Scholar 

  32. H. H. Michels, R. B. Hobbs, and W. A. Wright,J. Chem. Phys. 69, 5151 (1978).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, W.L.T., Heberlein, J. & Pfender, E. Critical analysis of viscosity data of thermal argon plasmas at atmospheric pressure. Plasma Chem Plasma Process 16, 635–650 (1996). https://doi.org/10.1007/BF01447012

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01447012

Key words

Navigation