Skip to main content
Log in

Thermodynamic and transport properties of argon/carbon and helium/carbon mixtures in fullerene synthesis

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The equilibrium composition and thermodynamic and transport properties of argon; carbon and helium/carbon mixtures are calculated in the temperature range 300–20,000 K. The curves for the composition of mixtures of 50%, carbon in argon or helium are shown fir a pressure of 1.33 × 104 Pa. The calculations for the heat capacity at constant pressure (Cp) and transport coefficients are validated with other studies, for the cases or pure argon and pure helium at a pressure of 105 Pa. The properties of mixtures with various proportions of carbon in argon and helium are calculated. Results are presented at pressures of 105 and 1.33 × 104 Pa, typical of reactors for the synthesis of fullerenes and nanotubes. It is observed that the properties of carbon and mixtures of carbon with a buffer gas (argon or helium) are very different from those of the buffer gas, thus the need to consider this effect in simulations. In general, the mixtures follow trends intermediate to those of the pure gases from which they are composed except for the thermal conductivity which shows a deviation from this tendency in the region between 11,500 and 19,000 K for argon/carbon mixtures and between 8,000 and 12,000 K for helium/carbon mixtures. Also, the electrical conductivity of mixtures of low carbon concentration is very close to that ofpure carbon. A datafile containing the transport properties of mixtures for pressures between 104 and 105 Pa is available free of charge from the authors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. W. Kroto, R. Heath, S. C. O'Brien, and R. E. Smalley,Nature 318, 162 (1985).

    Google Scholar 

  2. M. A. Wilson, L. S. K. Pang, G. D. Willett, K. J. Fisher, and I. G. Dance,Carbon 30, 675 (1992).

    Google Scholar 

  3. L. S. K. Pang, A. M. Vassallo, and M. A. Wilson,Energy Fuels 6, 176 (1992).

    Google Scholar 

  4. L. S. K. Pang, and M. A. Wilson,Energy Fuels 7, 436 (1993).

    Google Scholar 

  5. J. B. Howard,24th Symp. (Int.) on Combustion (1992), p. 182.

  6. R. Taylor, J. P. Hare, A. Abdul-Sada, and H. W. Kroto,J. Chem. Soc., Chem. Commun. 20, 1423 (1990).

    Google Scholar 

  7. G. Peters and M. Jansen,Angew. Chem. Int. Ed. Engl. 31, 223 (1992).

    Google Scholar 

  8. R. F. Curl,Appl. Supercond. 1, 869 (1993).

    Google Scholar 

  9. L. Laska, L. Juha, J. Krasa, V. Hamplova, and L. Soukup,Czech. J. Phys. 43, 193 (1993).

    Google Scholar 

  10. T. Sone, H. Akatsuka, and M. Suzuki,Plasma Sources Sci. Technol. 2, 46 (1993).

    Google Scholar 

  11. K-I. Yoshie, S. Kasuya, K. Eguchi, and T. YoshidaAppl. Phys. Lett. 61, 2782 (1992).

    Google Scholar 

  12. R. E. Haufler, J. Conceicao, K. P. F. Chibante, Y. Chai, N. E. Byrne, S. Flanagan, M. M. Haley, S. C. O'Brien, C. Pan, Z. Xiao, W. E. Billups, M. A. Ciufolini, R. H. Hauge, J. L. Margrave, L. J. Wilson, R. F. Curl, and R. E. Smalley,J. Phvs. Chem. 94, 8634 (1990).

    Google Scholar 

  13. J. P. Hare, H. W. Kroto and R. Taylor,Chem. Phys. Lett. 177, 394 (1991).

    Google Scholar 

  14. C. N. R. Rao, T. Pradeep, R. Seshadri, R. Nagarajan, V. N. Murthy, G. N. Subbanna, F. D'Souza, V. Krishnan, G. A. Nagannagowda, N. R. Suryaprakash, C. L. Khetrapal, and S. V. Bhat,Indian J. Chem. 31 A&B, F5 (1992).

    Google Scholar 

  15. A. Huczko, G. Lange, and P. Byszewski,Proc. 12th Int. Sump. Plasma Chemistry (ISPC l2), Minneapolis, Minnesota (1995), p. 1183.

  16. D. H. Parker, P. Wurz, K. Chatterjee, K. R. Lykke, J. E. Hunt, M. J. Pellin, J. C. Hemminger, D. M. Gruen, and L. M. Stock,J. Am. Chem. Soc. 113, 7499 (1991).

    Google Scholar 

  17. Y. Saito, M. Inagaki, H. Shinohara, H. Nagashima, M. Ohkohchi, and Y. Ando,Chem. Phys. Lett. 200, 643 (1992).

    Google Scholar 

  18. Y. Ando and S. Ijima,Jpn. J. Appl. Phys. 32, L107 (1993).

    Google Scholar 

  19. D. T. Colbert, J. Zhang, S. M. McClure, P. Nikolaev, Z. Chen, J. H. Hafner, D. W. Owens, P. G. Kotula, C. B. Carter, J. H. Weaver, A. G. Ringley, and R. E. Smalley,Science 266, 1218 (1994).

    Google Scholar 

  20. P. Byszewski, P. Dluzewski and R. Didusko,J. Mater. Res. 8, 118 (1993),

    Google Scholar 

  21. M. Ohkohchi, Y. Ando, S. Bandow, and Y. Saito,Jpn. J. Appl. Phys. 32, L1248 (1993).

    Google Scholar 

  22. R. S. Devoto,Phys. Fluids 10, 354 (1967).

    Google Scholar 

  23. M. Capitelli, E. Ficocelli, and E. MolinariEquilibrium Composition and Thermodynamic Properties of Mixed Plasmas, Adriatica Editrice, Bari, Italy (1970).

    Google Scholar 

  24. R. S. Devoto,Phys. Fluids 16, 616 (1973).

    Google Scholar 

  25. C. Gorse, “Contribution au calcul des propriétés de transport des plasmas des mélanges Ar-H2 et Ar-N2,” Doctoral thesis, Université de Limoges, France, 1975.

    Google Scholar 

  26. B. Pateyron, M.-F. Elchinger, G. Delluc, and P. Fauchais,Plasma Chem. Plasma Process. 12, 421 (1992).

    Google Scholar 

  27. B. Chervy, O. Dupont, A. Gleizes, and P. Krenek,J. Ph Vs. D: Appl. Plis. 28, 2060 (1995).

    Google Scholar 

  28. R. S. Devoto and C. P. Li,J. Plasma Phys. 2, 17 (1968).

    Google Scholar 

  29. M. Capitelli and E. Molinari,J. Plasma Phys. 4, 335 (1970).

    Google Scholar 

  30. O. Coufal and I. Zajacova,Acta Phys. Slov. 41, 361 (1991).

    Google Scholar 

  31. T. Sakuta and T. Takashima,Proc. Xth Int. Conf. Gas Discharge Appl., Swansea,1, 110 (1992).

    Google Scholar 

  32. B. Chervil, “Calcul des propriétés de transport et étude du pouvoir de coupure des mélanges hexafluorure de soufre (SF6)-fluorure de carbone (CF4 ou C2F6) et hexafluorure de soufre; vapeurs de cuivre,” Doctoral thesis, Université Paul-Sabatier, Order No. 1997, Toulouse, France, 1995.

    Google Scholar 

  33. B. Chervil, H. Riad, and A. Gleizes, IEEE Trans. Plasma Sei.24 (1996).

  34. K. Wechsler, I. W. Rangelow, Z. Borokowicz, F. Durst, L. Kadinski, and M. Schafer,Proc. Ilth Int. Symp. Plasma Chem., Loughborough, Great Britain (1993), p. 909.

    Google Scholar 

  35. B. Chervy, A. Gleizes, and M. Razafinimanana,J. Phys. D. Appl. Phys. 27, 1193 (1994).

    Google Scholar 

  36. H. W. Drawin and P. Felenbok,Data for Plasmas in Local Thermodynamic Equilibrium, Éditions Gauthier-Villars, France (1965).

    Google Scholar 

  37. M. W. Chase, Jr., C. A. Davies, J. R. Downey, Jr., D. J. Frurip, R. A. McDonald, and A. N. Syverud,JANAF Thermochemical Tables, 3rd edn. (1985).

  38. J. Bacri and S. Raffanel,Plasma Chem. Plasma Process 7, 53 (1987).

    Google Scholar 

  39. G. Herzberg,Molecular Spectra and Molecular Structure. Vol. II: Infrared and Raman Spectra of Polyatomic Molecules, Van Nostrand Reinhold, New York (1945).

    Google Scholar 

  40. S. Chapman and T. Cowling,The Mathematical Theory of Nonuniform Gases, Cambridge University Press, New York (1952).

    Google Scholar 

  41. R. S. Devoto,Phys. Fluids 9, 1230 (1966).

    Google Scholar 

  42. C. Muckenfuss and C. F. Curtiss,J. Chem. Phys. 29, 1273 (1958).

    Google Scholar 

  43. R. S. Devoto,Phys. Fluids 10, 2105 (1967).

    Google Scholar 

  44. J. T. Vanderslice, S. Weissman, E. A. Mason, and R. J. Fallon,Phys. Fluids 5, 155 (1962).

    Google Scholar 

  45. K. S. Yun, S. Weisman, and E. A. Mason,Phys. Fluids 5, 672 (1962).

    Google Scholar 

  46. J. N. Butler and R. S. Brokaw,J. Chem. Phys. 26, 1636 (1957).

    Google Scholar 

  47. J. O. Hirschfelder, R. S. Curtiss, and R. B. Bird,Molecular Theory of Gases and Liquids, Wiley, New York (1964).

    Google Scholar 

  48. F. J. Smith and R. J. Munn,J. Chem. Phys. 41, 3560 (1964).

    Google Scholar 

  49. R. S. Brokaw,Phys. Fluids 8, 944 (1961).

    Google Scholar 

  50. L. Moonchick,Phys. Fluids 2, 695 (1959).

    Google Scholar 

  51. P. E. Phillipson,Phys. Rev. 125, 1981 (1962).

    Google Scholar 

  52. A. Sanon, “Contribution au calcul des propriétés thermodynamiques et des coefficients de transport de plasmas thermiques de mélanges Ar/H2/CH4”, Doctoral thesis, Université de Limoges, France, 1988.

  53. J. Aubreton, “Etude des propriétés thermodynamiques et de transport dans les plasmas thermiques á l'équilibre et hors équilibre thermodynamique-Applications aux plasmas de mélanges Ar-H2, et Ar-O2,” Doctoral thesis, Université de Limoges, France, 1985.

  54. J. H. Ferziger and H. G. Kapper,Mathematical Theory of Transport Processes in Gases, North-Holland, Amsterdam-London (1972).

    Google Scholar 

  55. Z. Koalaga, “Contribution á l'étude expérimentale et théorique des plasmas d'arc électriques laminés,” Doctoral thesis, Université de Clermont-Ferrand, France, 1991.

  56. R. L. Spoull, “Eléments de physique moderne,” Mason et Cie, Sofradel éditeurs (1967).

  57. W. Frie,Z. Phys. 201, 969 (1967).

    Google Scholar 

  58. T. Kihara, M. H. Taylor, and J. O. Hirschfelder,Phys. Fluids 3, 715 (1960).

    Google Scholar 

  59. Handbook of Chemistry and Physics, 67th edition, CRC-Press (1986-87).

  60. Y. Itikawa,At. Data Nucl. Data Tables 21, 69 (1978).

    Google Scholar 

  61. E. J. Robinson and S. Geltman,Phys. Rev. 153, 4 (1967).

    Google Scholar 

  62. K. L. Bell, N. S. Scott, and M. A. Lennon,J. Phys. B: At. Mol. Phys. 17, 4757 (1984).

    Google Scholar 

  63. E. A. Mason, J. T. Vanderslice, and J. M. Yos,Phys. Fluids. 2, 688 (1959).

    Google Scholar 

  64. J.-T. Mostaghimi and E. Pfender,Plasma Chem. Plasma Process. 4, 129 (1984).

    Google Scholar 

  65. D. F. Collins, R. Grief, and A. E. Bryson,Int. J. Heat Mass Transfer 8, 1209 (1965).

    Google Scholar 

  66. W. L. T. Chen, J. Heberlein, E. Pfender, B. Pateyron, G. Delluc, M. F. Elchinger, and P. Fauchais,Plasma Chem. Plasma Process.15, 559 (1995).

    Google Scholar 

  67. J. F. Uhlenbusch and E. Fischer,Proc. IEEE 59, 578 (1971).

    Google Scholar 

  68. J. F. Bilodeau, J. Pousse, M. Razafinimanana, and A. Gleizes, Contributed paper submitted to the 4th Eur. Conf. Thermal Plasmas (TPP4), Athens (1996).

  69. J. T. Mostaghimi, P. Proulx, and M. I. Boulos,J. Appl. Phys. 61, 1753 (1987).

    Google Scholar 

  70. A. Gleizes, A. A. M. Habib, M. Razafinimanana, M. Sabsabi, and S. Vacquié,Spectrochim. Acta 45b, 789 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pousse, J., Chervy, B., Bilodeau, JF. et al. Thermodynamic and transport properties of argon/carbon and helium/carbon mixtures in fullerene synthesis. Plasma Chem Plasma Process 16, 605–634 (1996). https://doi.org/10.1007/BF01447011

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01447011

Key words

Navigation