Skip to main content
Log in

An equation of state for pure fluids describing the critical region

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Density fluctuations of a pure nuid are treated by a cell model, in which the fluid is divided into cells containing different numbers of particles. A probability function for the particle number is derived. This function, after convolution with a classical (mean field) equation of state, leads to an improved equation of state which is valid in the critical region. The equation of state is analytical, hence not exact in the immediate vicinity of the critical point. As an example, the convolution is applied to the Carnahan-Starling/van der Waals equation of state; the resulting equation of state is used to correlate thermodynamic properties of several simple fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. G. Wilson.Phys. Rev. 4:3174, 3184 (1971).

    Article  Google Scholar 

  2. G. A. Chapela and J. S. Rowlinson,Faraday Trans. 170:584 (1974).

    Google Scholar 

  3. H. W. Wooley,Int. J. Thermophys. 4:51 (1983).

    Google Scholar 

  4. J. R. Fox.Fluid Phase Equil. 14:45 (1983).

    Google Scholar 

  5. Z. Y. Chen, P. C. Albright, and J. V. Sengers,Phys. Rev. A 41:3161 (1990).

    Google Scholar 

  6. S. B. Kiselev and J. V. Sengers,Im. J. Thermophys. 14:1 (1993).

    Google Scholar 

  7. O. K. Rice and D. R. Chang,Physica 78:490 (1974).

    Google Scholar 

  8. O. K. Rice and D. R. Chang,Physica 74:226 (1974).

    Google Scholar 

  9. T. Kraska.Entwicklung einer Zustandsgleichung für fluide Reinstoffe unter Berücksichtigung des nahkritischen Gebietes (doctoral dissertation). Reihe Chemie (Verlag Shaker, Aachen, 1992).

    Google Scholar 

  10. N. F. Carnahan and K. F. Starling,J. Chem. Phys. 51:635 (1969).

    Google Scholar 

  11. J. D. van der Waals,On the Continuity o/ Gases and Liquids (1873), Vol. XIV, Studies in Statistical Mechanics (North-Holland, Amsterdam, 1988).

    Google Scholar 

  12. A. Kreglcwski and R. C. Wilhoit,J. Chem. Phys. 79:419 (1975).

    Google Scholar 

  13. S. S. Chen and A. Kreglcwski,Ber. Bunsenges Phys. Chem. 81:1048 (1977).

    Google Scholar 

  14. T. H. Berlin and M. Kac,Phys. Rev. 86:821 (1952).

    Google Scholar 

  15. K. G. Wilson and J. Kogut,Phys. Rep. C 12:75 (1974).

    Google Scholar 

  16. S. Angus, B. Armstrong, and K. M. de Reuck.IUPAC International Tables of the Fluid Stute—3: Carbon Dioxide (Pergamon, Oxford, 1976).

    Google Scholar 

  17. S. Angus, B. Armstrong, and K. M. de Reuck.IUPAC International Tables of the Fluid Stute—11. Fluorine, IUPAC Chemical Data Series No. 36 (Blackwell, Oxford, 1990).

    Google Scholar 

  18. T. H. P. Raymond and R. H. Harrison,J. Chem. Eng. Data 6:1 (1982).

    Google Scholar 

  19. API-44 Tables, American Petroleum Institute, Project 44 (Thermodynamics Research Institute, Texas A & M University, 1988).

  20. S. Angus and B. Armstrong,IUPAC International Tables of the Fluid Stute—1: Argon (Butterworths, London, 1971).

    Google Scholar 

  21. H. Gielen, V. Jansoone, and O. Verbeke,J. Chem. Phys. 59:5763 (1973).

    Google Scholar 

  22. S. Angus, B. Armstrong, and K. M. de Reuck.IUPAC International Tahles of the Fluid State—5: Methane (Pergamon, Oxford, 1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kraska, T., Deiters, U.K. An equation of state for pure fluids describing the critical region. Int J Thermophys 15, 261–281 (1994). https://doi.org/10.1007/BF01441586

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01441586

Key Words

Navigation