Skip to main content
Log in

The viscosity of liquid carbon dioxide

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The viscosity coellicient of carbon dioxide in the liquid phase has been measured by means of a vibrating-wire viscometer at temperatures of 220, 230, 240, 2411, 260, and 380 K. The measurements extended beyond both phase transition lines into the coexistence region (superheated liquid) and into the solid range (undercooled liquid). At 3811 K. the measurements extended only to 3511 MPa since no density data are available for high pressures. The accuracy of the measurements is estimated to be I % The agreement with the data of Ulybin and Makarushkin is rather good, but our values are in general a few percent lower than those of Diller and Ball. The results show, for the most part, a linear pressure dependence for the various isotherms, with a common intersection with the negative pressure axis of 113.7 MPa. The fluidity, the reciprocal of the viscosity, shows a linear dependence of the molar volume in adjacent density ranges. After reduction of the molar volume with the volumes of close packing, two sets of linear functions result, with common intersections of the axis forV/V 0=1.31 andV/V 0=1.40.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. D. van der Waals Jr.,Proc. Kon. Akad. Wetensch. Amsterdam 21:743, 1283 (1919).

    Google Scholar 

  2. L. Brillouin,J. Phys. (Paris) 3:326 (1922).

    Google Scholar 

  3. N. da C. Andrade,Phil. Mag. 17:497, 698 (1934).

    Google Scholar 

  4. J. D. van der Waals Sr.. Doctoral dissertation (Leiden. 1873).

  5. R. Mostert, P. S. van der Gulik, and H. R. van den Berg.Physica A 156:909 (1989).

    Google Scholar 

  6. P. S. van der Gulik, inExperimental Thermodynamics, Vol. III. Measurement of the Transport Properties of Fluids, W. A. Wakeham, A. Nagashima, and J. V. Sengers, eds. (IUPAC, Blackwell Scientific, London, 1991). p. 79.

    Google Scholar 

  7. J. F. Ely. J. W. Magee, and W. M. Haynes.Thermophysical Properties lor Special High CO 2 Content Mixtures, GPA Research Report RRI 110 of Project 839. Part I (1987).

  8. P. S. van der Gulik, R. Mostert and H. R. van den Berg,High Temp. High Press. 23:87 (1991).

    Google Scholar 

  9. D. E. Diller and M. J. Ball,Int. J. Thermophys. 6:619 (1985).

    Google Scholar 

  10. S. A. Ulybin and V. I. Makarushkin,Therm Eng. 23:65 (1976).

    Google Scholar 

  11. P. S. van der Gulik, R. Mostert, and H. R. van den Berg.Physica A 151:153 (1988).

    Google Scholar 

  12. P. S. van der Gulik, R. Mostert, and H. R. van den Berg,Fluid Phase Equil. 79:301 (1992).

    Google Scholar 

  13. P. S. van der Gulik and N. J. Trappeniers,Physica A 135:1 (1986).

    Google Scholar 

  14. V. Vesovic, W. A. Wakeham, G. A. Olchowy, J. V. Sengers, I. T. R. Watson, and J. Millat.J. Phys. Chem. Ref. Data 19:761 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Gulik, P.S., El Kharraz, M. The viscosity of liquid carbon dioxide. Int J Thermophys 16, 145–153 (1995). https://doi.org/10.1007/BF01438965

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01438965

Key words

Navigation