Skip to main content
Log in

A new nonrandom lattice fluid model and its simplification by two-liquid theory for phase equilibria of complex mixtures

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A new riogorous equation of state (EOS) and its simplified version have been proposed by the present authors based on the full Guggenheim combinatorics ] of the nonrandom lattice hole theory. The simplified EOS. with the introduction of the concept of local composition, becomes similar to the density-dependent UNIQUAC model. However, im the present approach we have a volumetric EOS instead of the excess Gibbs function. Both EOSs were tested for their applicability in correlating the phase equilibria behavior of pure components and complex mixtures. Comparison of both models with experiment includes such systems as nonpolar nonpolar, nonpolar polar, and polar polar hydrocarbons, supercritical systems, and polymer solutions. With two parameters for each pure component and one binary interaction energy parameter, results obtained to date demonstrate that both formulations are quantitatively applicable to complex systems oer a wide range of temperatures, pressures, and concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. A. Guggenheim,Mixtures (Clarendon Press, Oxford, 1952), pp.215–252.

    Google Scholar 

  2. C. Panayiotou and J. H. Vera,Can. J. Chem. Eng. 59:501 (1981).

    Google Scholar 

  3. P. J. Flory,J. Chem. Phys. 9:660 (1941); J. Chem. Phys.10:51 (1942).

    Google Scholar 

  4. M. L. Huggins,J. Chem. Phys. 9:440 (1941).

    Google Scholar 

  5. D. Abrams and J. M. Prausnitz,AIChE J. 21:116 (1975).

    Google Scholar 

  6. I. C. Sanchez and R. H. Lacombe,J. Phys. Chem. 80:2352, 2568 (1976).

    Google Scholar 

  7. I. C. Sanchez and R. H. Lacombe,Macromolecules 11:1 145 (1978).

    Google Scholar 

  8. C. Panayiotou and J. H. Vera.Polym. J. 14:681 (1983).

    Google Scholar 

  9. H. V. Kehiaian, J.-P. E. Grolier, and G. C. Bebson,J. Chim. Phys. 75:1031 (1978).

    Google Scholar 

  10. M. Okada and T. Nose,Polym. J. 13:399, 591 (1981).

    Google Scholar 

  11. S. K. Kumar, U. W. Suter. and R. C. Reid.Ind. Eng. Chem. Res. 26:2532 (1987).

    Google Scholar 

  12. N. A. Smirnova and A. I. Victorov,Fluid Phase Equil. 34:235 (1987).

    Google Scholar 

  13. S. S. You, C. S. Lee, and K. P. Yoo,J. Supercrit. Fluids 6:69 (1991).

    Google Scholar 

  14. S. S. You, K. P. Yoo. and C. S. Lee,Fluid Phase Equil. 93:193 (1994).

    Google Scholar 

  15. S. S. You, K. P. Yoo, and C. S. Lee,Fluid Phase Equil. 93:215 (1994).

    Google Scholar 

  16. M. S. Shin, S. J. Yoo, K. P. Yoo, S, S. You, and C. S. Lee, Fluid Phase Equil. (1995). in press,

  17. G. M. Wilson,J. Am. Chem. Soc. 86:127 (1964).

    Google Scholar 

  18. J. H. Hong and R. Kobayashi,Fluid Phase Equil. 41:269 (1988).

    Google Scholar 

  19. D. Peng and D. Robinson.Ind. Eng. Chem. Fundam. 15:59 (1976).

    Google Scholar 

  20. P. J. Flory,Trans, Faraday Soc. 49:7 (1970).

    Google Scholar 

  21. C. E. H. Bawn and R. D. Patel.Trans. Faraday. Soc. 52:1664 (1956).

    Google Scholar 

  22. B. E. Eichinger and P. J. Flory.Trans. Faraday Soc. 64:2742 (1953).

    Google Scholar 

  23. 23.Y. H. Chang and D. C. Bonner,J. Appl. Polym. Sci. 19:2457 (1975).

    Google Scholar 

  24. C. Booth and G. N. Malcolm.Polymer 12:309 (1971).

    Google Scholar 

  25. T. Oishi and J. M. Prausnitz,Ind. Eng. Chem. Res. 26:1382 (1987).

    Google Scholar 

  26. J. H. Anderson, P. Rasmussen, and A. Fredenslund,Ind. Eng. Chem. Res. 26:382 (1987).

    Google Scholar 

  27. M. S. High and R. P. Danner,AIChE J. 36:1625 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, M.S., Yoo, K.P., You, S.S. et al. A new nonrandom lattice fluid model and its simplification by two-liquid theory for phase equilibria of complex mixtures. Int J Thermophys 16, 723–731 (1995). https://doi.org/10.1007/BF01438857

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01438857

Key words

Navigation