Skip to main content
Log in

Calculation of the Liquid–Solid Phase Diagram and the Thermodynamic Quantities of the Binary System of Tetradecane and Hexadecane Using the Mean Field Theory

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The T − x phase diagram of a binary system of tetradecane + hexadecane is calculated using the Landau phenomenological model. Expressions derived for the phase lines are fitted to experimental data from the literature and the fitted parameters are determined for the transitions of liquid–solid I, liquid–solid II and solid I–solid II in this binary system. The temperature dependence of the thermodynamic quantities, including the order parameter, susceptibility, enthalpy, entropy, heat capacity, thermal expansion and the isothermal compressibility are predicted for this solid–liquid equilibrium system of tetradecane + hexadecane. It is found that the mean field model developed here describes satisfactorily the observed behavior of the first order transition in the tetradecane + hexadecane system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Banaszek, J., Domanski, R., Rebow, M., El-Sagier, F.: numerical analysis of the paraffin wax–air spiral thermal energy storage unit. App. Thermal Eng. 20, 323–354 (2000)

    Article  CAS  Google Scholar 

  2. Al Hallaj, S., Selman, J.R.: A novel thermal management system for electric vehicle batteries using phase-change material. J. Electrochem. Soc. 147, 3231–3236 (2000)

    Article  Google Scholar 

  3. Neeper, D.A.: Thermal dynamics of wallboard with latent heat storage. Sol. Energy 68, 393–403 (2000)

    Article  Google Scholar 

  4. Liu, Z., Chung, D.D.L.: Calorimetric evaluation of phase change materials for use as thermal interface materials. Thermochim. Acta 366, 135–147 (2001)

    Article  CAS  Google Scholar 

  5. Py, X., Olives, R., Mauran, S.: Paraffin/porous-graphite-matrix composite as a high and constant power thermal storage material. Int. J. Heat Mass Transf. 44, 2727–2737 (2001)

    Article  CAS  Google Scholar 

  6. Lee, T., Hawes, D.W., Banu, D., Feldman, D.: Control aspects of latent heat storage and recovery in concrete. Sol. Energ. Mater. Sol. C 62, 217–237 (2000)

    Article  CAS  Google Scholar 

  7. Hong, Y., Ge, X.S.: Preparation of polyethylene-paraffin compound as a form-stable solid–liquid phase change material. Sol. Energ. Mater. Sol. C. 64, 37–44 (2000)

    Article  CAS  Google Scholar 

  8. Xiao, M., Feng, B., Gong, K.: Thermal performance of a high conductive shape-stabilized thermal storage material. Sol. Energ. Mater. Sol. C. 69, 293–296 (2001)

    Article  CAS  Google Scholar 

  9. Sari, A., Kaygusuz, K.: thermal energy storage system using stearic acid as a phase change material. Sol. Energy 71, 365–376 (2001)

    Article  CAS  Google Scholar 

  10. Yamazaki, M., Sasaki, C., Kakiuchi, H., Osano, Y.T., Suga, H.: Thermal and structural characterization of trimethylolethane trihydrate. Thermochim. Acta 387, 39–45 (2002)

    Article  CAS  Google Scholar 

  11. Cho, K., Choi, S.H.: Thermal characteristics of paraffin in a spherical capsule during freezing and melting processes. Int. J. Heat Mass Transf. 43, 3183–3196 (2000)

    Article  CAS  Google Scholar 

  12. Bo, H., Gustafsson, E.M., Setterwall, F.: Tetradecane and hexadecane binary mixtures as phase change materials (PCMS) for cool storage in district cooling systems. Energy 24, 1015–1028 (1999)

    Article  CAS  Google Scholar 

  13. He, B., Martin, V., Setterwall, F.: Liquid–solid phase equilibrium study of tetradecane and hexadecane binary mixtures as phase change materials (PCMs) for comfort cooling storage. Fluid Phase Equilib. 212, 97–109 (2003)

    Article  CAS  Google Scholar 

  14. He, B., Martin, V., Setterwall, F.: Phase transition temperature ranges and storage density of paraffin wax phase change materials. Energy 29, 1785–1804 (2004)

    Article  CAS  Google Scholar 

  15. Morawski, P., Coutinho, J.A.P., Domanska, U.: High pressure (solid plus liquid) equilibria of n-alkane mixtures: experimental results, correlation and prediction. Fluid Phase Equilib. 230, 72–80 (2005)

    Article  CAS  Google Scholar 

  16. Domanska, U., Morawski, P.: Solid plus liquid equilibria of (n-alkane plus cyclohexane) mixtures at high pressures. Fluid Phase Equilib. 218, 57–68 (2004)

    Article  CAS  Google Scholar 

  17. Milhet, M., Pauly, J., Coutinho, J.A.P., Dirand, M., Daridon, J.L.: Liquid–solid equilibria under high pressure of tetradecane plus pentadecane and tetradecane plus hexadecane binary systems. Fluid Phase Equilib. 235, 173–181 (2005)

    Article  CAS  Google Scholar 

  18. Pauly, J., Daridon, J.L., Coutinho, J.A.P., Lindeloff, N., Andersen, S.I.: Prediction of solid-fluid phase diagrams of light gases–heavy paraffin systems up to 200 MPa using an equation of state-g(e) model. Fluid Phase Equilib. 167, 145–159 (2000)

    Article  CAS  Google Scholar 

  19. Hayami, Y., Findenegg, G.H.: Surface crystallization and phase transitions of the adsorbed film of F(CF2)(12)(CH2)(16)H at the surface of liquid hexadecane. Langmuir 13, 4865–4869 (1997)

    Article  CAS  Google Scholar 

  20. Jansen, J.W., de Kruif, C.G., Vrij, A.: Phase Seperation of sterically stabilized colloids as a function of temperature. Chem. Phys. Lett. 107, 450–453 (1984)

    Article  CAS  Google Scholar 

  21. Roke, S., Buitenhuis, J., van Miltenburg, J.C., Bonn, M., van Blaaderen, A.: Interface–solvent effects during colloidal phase transitions. J. Phys. Condens. Mater. 17, S3469–S3479 (2005)

    Article  CAS  Google Scholar 

  22. Yurtseven, H., Tilki, Ö.: Volume calculated as a function of pressure near the melting point in solid hexadecane. High Temp. Mater. Process. 26, 123–129 (2007)

    CAS  Google Scholar 

  23. Yurtseven, H., Tilki, Ö., Kurt, M.: Pippard relations close to the melting point in the premelting region of hexadecane. J. Thermodyn. 2012, 1–6 (2012)

    Article  Google Scholar 

  24. Tanaka, Y., Kawakami, M.: Solid–liquid phase equilibria in binary (benzene, cyclohexane plus n-tetradecane, n-hexadecane) systems at temperatures 230–323 k and pressures up to 120 MPa. Fluid Phase Equilib. 125, 103–114 (1996)

    Article  CAS  Google Scholar 

  25. Landau, L.D.: On the theory of phase transitions. I. Zh. Eksp. Teor. Fiz. 7, 19 (1937)

    CAS  Google Scholar 

  26. Landau, L.D.: On the theory of phase transitions. II. Zh. Eksp. Teor. Fiz. 7, 627 (1937)

    Google Scholar 

  27. Gufan, Y.M.: Structural Phase Transitions. Science, Moscow, Izdatel'stvo Nauka (1982) (in Russian)

  28. Toledano, J.C., Toledano, P.: The Landau Theory of Phase Transitions. World Scientific, Singapore (1987)

    Book  Google Scholar 

  29. Gmehling, J.G., Anderson, T.F., Prausnitz, J.M.: Solid–liquid equilibria using UNIFAC. Ind. Eng. Chem. Fundam. 17, 269–273 (1978)

    Article  CAS  Google Scholar 

  30. Won, K.W.: Thermodynamic calculation of cloud point temperatures and wax phase compositions of refined hydrocarbon mixtures. Fluid Phase Equilib. 53, 376–377 (1989)

    Article  Google Scholar 

  31. Pedersen, K.S., Skovborg, P., Ronningsen, H.P.: Wax precipitation from North-Sea crude oils. 4. Thermodyn. Model. Energy Fuel 5, 924–932 (1991)

    Article  Google Scholar 

  32. Mahouti, P.: Design optimization of a pattern reconfigurable microstrip antenna using differential evolution and 3D EM simulation-based neural network model. Int. J. RF Microwave Comput. Aided Eng. 29, 21796 (2019)

    Article  Google Scholar 

  33. Mazee, W.M.: Thermal analysis of normal alkanes. Anal. Chim. Acta. 17, 97–106 (1957)

    Article  CAS  Google Scholar 

  34. Mnyukh, Y.V.: The structure of normal paraffins and of their solid solutions. J. Struct. (USSR) (Zhur. Struk. Khim). 1, 370–388 (1960)

  35. Turner, W.R.: Normal alkanes. Ind. Eng. Chem. Prod. Res. Develop. 10, 238–260 (1971)

    CAS  Google Scholar 

  36. Yurtseven, H., Yilmaz, A.: Analysis of the heat capacity for pure CH4 and CH4/CCl4 on graphite near the melting point and calculation of the T − X phase diagram for (CH3)CCl3 + CCl4. Front. Phys. 4, 1–7 (2016)

    Article  Google Scholar 

  37. Yurtseven, H., Akay, O.: Liquid–(solid+liquid) transitions in a two component system of (CH3)CCl3 + CCl4. J. Solution Chem. 49, 195–209 (2020)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Yurtseven.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yurtseven, H., Emirosmanoglu, T. & Tari, O. Calculation of the Liquid–Solid Phase Diagram and the Thermodynamic Quantities of the Binary System of Tetradecane and Hexadecane Using the Mean Field Theory. J Solution Chem 50, 1335–1362 (2021). https://doi.org/10.1007/s10953-021-01120-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-021-01120-4

Keywords

Navigation