Skip to main content
Log in

Broadening of the vibrational linewidth in a mixture due to critical concentration fluctuations

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Vibrational Raman spectroscopy is a very usful technique for studying the dynamical behavior of a system, in particular in the critical region. In a mixture, composition fluctuations play an important role and on the basis of the results for pure substances one would expect an increase of the linewidth in approaching the critical point. However, in previous experiments such an effect was not detected. The reasons for this failure will be discussed. Recently, we have observed a considerable broadening of the linewidth in approaching the critical point in the system helium-nitrogen under high pressure. However, it is well-known that broadening may occur through various other mechanisms such as changes in density, composition fluctuations far from the critical point, aggregation, etc. On the basis of the helium-nitrogen data the pitfalls in the experimental determination of critical broadening are discussed. The data analysis takes into account the contribution of noncritical effects. Consequences are drawn for the interpretation of spectroscopic data in terms of concentration of species in supercritical solvents. Moreover, we discuss the possibility of a difference between the local composition and the bulk composition and demonstrate from our line shift data that this is not a critical effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Schiferl R. LeSar and D. S. Moore, inSimple Molecular Systems at Very High Density, A. Polian, P. Loubeyrc, and N. Boccara. eds. (Plenum, New York. 1989), p. 303.

    Google Scholar 

  2. M. Clouter.Annu. Rev. Phys. Chem. 39:69 (1988).

    Google Scholar 

  3. J. Chesnoy and M. Gale.Adv. Chem. Phys. 70:297 (1988).

    Google Scholar 

  4. B. P. Hills and P. A. Madden.Mol. Phys. 37:937 (1979).

    Google Scholar 

  5. M. J. Clouter and H. Kiefle.Phys. Rev. Lett. 52:763 (1984).

    Google Scholar 

  6. K. A. Wood and H. L. Strauss.J. Chem. Phys. 74:6027 (1981); J. R. Petrula. H. L. Strauss. K. Q.-H. Lao. and R. Pecora.J. Chem. Phys. 68:623 (1978).

    Google Scholar 

  7. H. J. van Elburg and J. D. van Voorst.Chem. Phys. 113:463 (1987).

    Google Scholar 

  8. B. P. Hills,Mol. Phys. 37:949 (1979).

    Google Scholar 

  9. D. W. Oxtoby,Annu. Rev. Phys. Chem. 32:77 (1981).

    Google Scholar 

  10. W. Knapp and S. Fisher.J. Chem. Phys. 76:4730 (1982).

    Google Scholar 

  11. M. J. Clouter, H. Kiefte. and R. K. Jain.J. Chem. Phys. 73:673 (1980).

    Google Scholar 

  12. S. R. I. Brueck.Chem. Phys. Len. 50:516 (1977).

    Google Scholar 

  13. P. Loubeyre, R. LeToullec, and J. P. Pinceaux,Phys. Rev. B 45:12844 1992).

    Google Scholar 

  14. S. Mukamel, P. S. Stern, and D. Ronis.Phys. Rev. Lett. 50:590 (1983); M. J. Clouter and H. Kiefte.J. Chem. Phys. 66:1736 (1977).

    Google Scholar 

  15. B. Khalil-Yahyavi. M. Chatelet, and B. Oksengorn,J. Chem. Phys. 89:3573 (1988).

    Google Scholar 

  16. L. J. Callego. J. A. Somoza, and M. C. Blanco,Z. Naturforsch. 43a:847 (1988).

    Google Scholar 

  17. H. L. Strauss and S. Mukamel.J. Chem. Phys. 80:6328 (1984).

    Google Scholar 

  18. C. B. Roberts, I. E. Chateauneuf. and J. F. Brennecke,J. Am. Chem. Soc. 114:8455 (1992).

    Google Scholar 

  19. W. L. Vos and J. A. Schouten,Physica A 182:365 (1992).

    Google Scholar 

  20. L. J. Muller. D. Vanden Bout, and M. Berg,J. Chem. Phys. 99:810 (1993).

    Google Scholar 

  21. H. Burstyn and J. V. Sengers.Phys. Rev. A 25:448 (1982).

    Google Scholar 

  22. R. Kubo, inFluctuation. Relaxation, and Resonance in Magnetic Systems, D. ter Haar, ed. (Olivet & Boyd. Edinburgh, 1962).

    Google Scholar 

  23. M. I. M. Scheerboom and J. A. Schouten, Plats. Rev. E51 (in press).

  24. A. Kumar, H. R. Krisnamurthy. and E. S. Gopal,Phys. Rep. 98:57 (1983).

    Google Scholar 

  25. J. H. Lunacek and D. S. Cannell.Phys. Rev. Lett. 27:841 (1971).

    Google Scholar 

  26. W. Zhang and J. A. Schouten. unpublished.

  27. J. Chesnoy,Chem. Phys. Lett. 125:267 (1986): J. Chesnoy and G. M. Gale,Adv. Chem. Phys. 70:397 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schouten, J.A., Scheerboom, M.I.M. Broadening of the vibrational linewidth in a mixture due to critical concentration fluctuations. Int J Thermophys 16, 585–598 (1995). https://doi.org/10.1007/BF01438844

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01438844

Key words

Navigation