Skip to main content
Log in

The human episome HALF1: Structure of its genomic counterpart

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

A human episomal sequence (HALF1) has been identified by its ability to restore expression of hepatic functions when used to transfect a rat dedifferentiated cell line. The genomic equivalent of this human episome (gHALF1) and its flanking sequences were analyzed. HALF1 itself does not present the characteristics of a transposable element but half of its sequence corresponds to retroposons, including Alu and L1 repeats and a processed pseudogene, known to transposevia RNA intermediates. The structural characteristics of these different kinds of retroposons and their origin and evolution were analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bailey, A. D. & C. K. Shen, 1993. Sequential insertion of Alu family repeats into specific genomic sites of higher primates. Proc. Natl. Acad. Sci. USA 90: 7205–7209.

    PubMed  Google Scholar 

  • Bellanné-Chantelot, C., B. Lacroix, P. Ougen, A. Billault, S. Beaufils, S. Bertrand, I. Georges, F. Gilbert, I. Gros, G. Lucotte, L. Susini, J. J. Codani, P. Gesnouin, S. Pook, G. Vaysseix, J. LuKuo T. Ried, D. Ward, I. Chumakov, D. Le Paslier, E. Barillot & D. Cohen, 1992. Mapping the whole human genome by fingerprinting yeast artificial chromosomes. Cell 70: 1059–1069.

    PubMed  Google Scholar 

  • Bernardi, G., B. Olofson, J. Filipski, J. Zerial, J. Salinas, G. Cuny, M. Meunier-Rotival & F. Rodier, 1985. The mosaic genome of warm-blooded vertebrates. Science 228: 953–958

    PubMed  Google Scholar 

  • Boccaccio, C., F. Apiou, J. Deschatrette, A. Aurias & M. Meunier-Rotival, 1994. Chromosomal localization and sequence analysis of a human episomal sequence within vitro differentiating activity. Somat. Cell Molec. Genet. 20: 163–170.

    PubMed  Google Scholar 

  • Boccaccio, C., J. Deschatrette & M. Meunier-Rotival, 1990. Empty and occupied insertion site of the truncated LINE-1 repeat located in the mouse serum albumin-encoding gene. Gene 88: 181–186.

    PubMed  Google Scholar 

  • Britten, R. J., W. F. Baron, D. B. Stout & E. H. Davidson, 1988. Sources and evolution of human Alu repeated sequences. Proc. Natl. Acad. Sci. USA 85: 4770–4774.

    PubMed  Google Scholar 

  • Deininger, P. L., M. A. Batzer, C. A. Hutchison III & M. H. Edgell, 1992. Master genes in mammalian repetitive DNA amplification. Trends Genet. 8: 307–311.

    PubMed  Google Scholar 

  • Dessen, P., C. Fondrat, C. Valencien & C. Mugnier, 1990. Bisance: a French service for access to biomolecular databases. Cabios 6: 355–356.

    PubMed  Google Scholar 

  • Dombroski, B. A., S. L. Mathias, E. Nanthakumar, A. F. Scott & H. H. Kazazian, 1991. Isolation of an active human transposable element. Science 254: 1805–1807.

    PubMed  Google Scholar 

  • Hattori, M., S. Kuhara, O. Takenaka & Y. Sakaki, 1986. L1 family of repetitive DNA sequences in primates may be derived from a sequence encoding a reverse transcriptase-related protein. Nature 321: 625–628.

    PubMed  Google Scholar 

  • Holmquist, G. P., 1992. Chromosome bands, their chromatin flavours and their functional features. Am. J. Hum. Genet. 51: 17–37.

    PubMed  Google Scholar 

  • Jurka, J., 1989. Subfamily structure and evolution of the human L1 family of repetitive sequences. J. Mol. Evol. 29: 496–503.

    PubMed  Google Scholar 

  • Jurka, J. 1993. A new subfamily of recently retroposed human Alu repeats. Nucleic Acids Res. 21: 2252.

    PubMed  Google Scholar 

  • Jurka, J. & A. Milosavljevic, 1991. Reconstruction and analysis of human Alu genes. J. Mol. Evol. 32: 105–121.

    PubMed  Google Scholar 

  • Jurka, J. & T. Smith, 1988. A fundamental division in the Alu family of repeated sequences. Proc. Natl. Acad. Sci. USA 85: 4775–4778.

    PubMed  Google Scholar 

  • Jurka, J., J. Walichiewicz & A. Milosavljevic, 1992. Prototypic sequences for human repetitive DNA. J. Mol. Evol. 35: 286–291.

    PubMed  Google Scholar 

  • Korenberg, J. R. & M. C. Rykowski, 1988. Human genome organization: Alu, LINEs and the molecular structure of metaphase chromosome bands. Cell 53: 391–400.

    PubMed  Google Scholar 

  • Leeflang, E. P., W.-M. Liu, C. Hashimoto, P. V. Choudary & C. W. Schmid, 1992. Phylogenetic evidence for multiple Alu source genes. J. Mol. Evol. 35: 7–16.

    PubMed  Google Scholar 

  • Matera, A. G., U. Hellmann, M. F. Hintz & C. W. Schmid, 1990. Recently transposed Alu repeats result from multiple source genes. Nucleic Acids Res. 18: 6019–6023.

    PubMed  Google Scholar 

  • Meunier-Rotival, M., P. Soriano, G. Cuny, F. Strauss & G. Bernardi, 1982. Sequence organization and genomic distribution of the major family of interspersed repeats of mouse DNA. Proc. Natl. Acad. Sci. USA 79: 355–359.

    PubMed  Google Scholar 

  • Ng, K. H., J. Maigné, M. Meunier-Rotival & J. Deschatrette, 1992. Cloning of a human DNA sequence that restores expression of hepatic functions in a defifferentiated rat hepatoma cell. Biochem. Bioph. Res. Commun. 188: 531–537.

    Google Scholar 

  • Quentin, Y., 1992. Fusion of a free left Alu monomer and a free right Alu monomer at the origin of the Alu family in the primate genomes. Nucleic Acids Res. 20: 487–493.

    PubMed  Google Scholar 

  • Rogers, J. H., 1985. The origin and evolution of retroposons.. Int. Rev. Cytol. 93: 187–279.

    PubMed  Google Scholar 

  • Sakaki, Y., Y. Kurata, T. Miyake & K. Saigi, 1983. Two-dimensional gel electrophoretic analysis of the HindIII 1.8-kb repetitive-sequence family in the human genome. Gene 24: 179–190.

    PubMed  Google Scholar 

  • Scott, A. F., B. J. Schmeckpeper, M. Abdelrazik, C. T. Comey, B. O'Hara, J. P. Rossiter, T. Cooley, P. Heath, K. D. Smith & L. Margolet, 1987. Origin of the human L1 elements: proposed progenitor genes deduced from a consensus DNA sequence. Genomics 1: 113–125.

    PubMed  Google Scholar 

  • Singer, M. F., 1982. Highly repeated sequences in mammalian genomes. Int. Rev. Cytol. 76: 67–112.

    PubMed  Google Scholar 

  • Skowronski, J., T. G. Fanning & M. F. Singer, 1988. Unit-length LINE-1 transcripts in human teratocarcinoma cells. Mol. Cell Biol. 8: 1385–1397.

    PubMed  Google Scholar 

  • Skowronski, J. & M. F. Singer, 1986. The abundant LINE-1 family of repeated DNA sequences in mammals: genes and pseudogenes. Cold Spring, Harbor Symp. Quant. Biol. 51: 457–463.

    Google Scholar 

  • Soriano, P., M. Meunier-Rotival & G. Bernardi, 1983. The distribution of interspersed repeats is nonuniform and conserved in the mouse and human genome. Proc. Natl. Acad. Sci. USA 80: 1816–1820.

    PubMed  Google Scholar 

  • Yamagishi, H., 1986. Role of mammalian circular DNA in cellular differentiation. Bioessays 4: 218–221.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boccaccio, C., Deschatrette, J. & Meunier-Rotival, M. The human episome HALF1: Structure of its genomic counterpart. Genetica 93, 217–224 (1994). https://doi.org/10.1007/BF01435253

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01435253

Key words

Navigation