Skip to main content
Log in

Microscopic observation of ordered colloids in sedimentation equilibrium and the importance of Debye-screening length. 8. Unsymmetrical ordering and inclusion of anisotropic particles

  • Colloid Science
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Unsymmetrical crystal-like ordering of anisotropic-shaped particles are observed directly by a metallurgical microscope in sedimentation equilibrium and in deionized suspensions. The anisotropic colloids are polydispersed gold sols, rectangular tungstic acid, ellipsoidal poly(tetrafluoroethylene)(PTFE), aggregated (dimer, trimer, ...) polystyrene spheres, and bowl-shaped polymers. The distribution of the particles is analyzed by the two-dimensional distance distribution function. The interparticle distance continues to decrease as the initial concentration of the particles increases. Young's elastic modulus for the crystal-like structures is estimated to be 3.1 Pa for PTFE particles. The transformation from the unsymmetrical ordering to the symmetrical (hexagonal) array takes place as the concentration of diffusible ions decreases, which shows that the electrostatic interparticle repulsion and the elongated Debye-screening length around the particles play a key role. Furthermore, a bowl-shaped particle is observed to include a sphere in its cavity. This inclusional association is influenced greatly by the delicate changes in the effective sizes of the host and guest molecules containing the electrical double layers. These results show that electrostatic interparticle repulsion and the elongated Debye-screening length around the particles are essential for the ordering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cotton JP, Moan M (1976) J Phys 37:L75

    Google Scholar 

  2. de Gennes PG, Pincus P, Velasco RM, Brochard F (1976) J Phys 37:1461

    Google Scholar 

  3. Schaefer DW (1977) J Chem Phys 66:3980

    Google Scholar 

  4. Plestil J, Mikes J, Dusek K (1979) Acta Polym 30:29

    Google Scholar 

  5. Hansen JP, Haytor JB (1982) Mol Phys 46:651

    Google Scholar 

  6. Hartl W, Versmold H (1984) J Chem Phys 81:2507

    Google Scholar 

  7. Ottewill RH (1985) Ber Bunsenges Phys Chem 89:517

    Google Scholar 

  8. Lin SC, Lee WI, Schurr JM (1978) Biopolymers 17:1041

    Google Scholar 

  9. Gruner F, Lehmann W (1982) J Phys A 15:2847

    Google Scholar 

  10. Hess W, Klein R (1983) Adv Phys 32:173

    Google Scholar 

  11. Schmitz KS (1983) Macromolecules 16:1550

    Google Scholar 

  12. Drifford M, Dalbiez JP (1984) J Phys Chem 88:5368

    Google Scholar 

  13. Kose A, Ozaki M, Takano K, Kobayashi Y, Hachisu S (1973) 44:330

  14. Crandall RS, Williams R (1977) Science 198:293

    Google Scholar 

  15. Pieranski P (1983) Contemp Phys 24:25

    Google Scholar 

  16. Okubo T (1987) J Chem Phys 86:2394

    Google Scholar 

  17. Luck W, Klier M, Wesslau H (1963) Ber Bunsenges Phys Chem 67:75,84

    Google Scholar 

  18. Hiltner PA, Krieger IM (1969) J Phys Chem 73:2386

    Google Scholar 

  19. Clark NA, Hurd AJ, Ackerson BJ (1979) Nature, London 281:657

    Google Scholar 

  20. Okubo T (1986) J Chem Soc Faraday Trans 1 82:3163, 3175, 3185

    Google Scholar 

  21. Brown JC, Pusey PN, Goodwin JW, Ottewill RH (1975) J Phys A 8:664

    Google Scholar 

  22. Mitaku S, Ohtsuki T, Okano K (1978) Jpn J Appl Phys 17:305, 627

    Google Scholar 

  23. Clark NA, Ackerson BJ (1980) Phys Rev Lett 44:1005

    Google Scholar 

  24. Lindsay HM, Chaikin PM (1982) J Chem Phys 76:3774

    Google Scholar 

  25. Joanicot HM, Jorand M, Pieranski P, Rothen F (1984) J Phys, Paris 45:1413

    Google Scholar 

  26. Lindsay HM, Dozier WD, Chaikin PM, Klein P, Hess W (1986) J Phys A 19:2583

    Google Scholar 

  27. Okubo T (1987) J Colloid Interface Sci 117:165

    Google Scholar 

  28. Okubo T (1987) J Am Chem Soc 109:1913

    Google Scholar 

  29. Okubo T (1987) J Phys Chem 91:1977

    Google Scholar 

  30. Fuoss RM (1948) J Polym Sci 3:603

    Google Scholar 

  31. Pals DTF, Hermans JJ (1948) J Polym Sci 3:897

    Google Scholar 

  32. Booth F (1948) Nature, London 161:83

    Google Scholar 

  33. Mooney H (1951) J Colloid Interface Sci 6:162

    Google Scholar 

  34. Harmsen GJ, Schooten J, Overbeek JThG (1953) J Coll Sci 8:72

    Google Scholar 

  35. Cox RA (1969) J Polym Sci A2:7, 441

    Google Scholar 

  36. Krieger IM (1972) Adv Colloid Interface Sci 3:111

    Google Scholar 

  37. Okubo T (1987) J Chem Phys 87:6733

    Google Scholar 

  38. Okubo T (1988) Naturwissenschaften 75:91

    Google Scholar 

  39. Furusawa K, Tomotsu N (1983) J Colloid Interface Sci 93:504

    Google Scholar 

  40. Okubo T (1987) J Chem Phys 86:5182

    Google Scholar 

  41. Okubo T (1987) Colloid Polym Sci 265:522

    Google Scholar 

  42. Okubo T (1987) Colloid Polym Sci 265:597

    Google Scholar 

  43. Okubo T (1987) Angew Chem 99:803

    Google Scholar 

  44. Okubo T (1987) J Chem Phys 87:5528

    Google Scholar 

  45. Okubo T (1988) J Chem Phys 88:2083

    Google Scholar 

  46. Okubo T, Aotani S (1988) Naturwissenschaften 75:145

    Google Scholar 

  47. Ise N (1986) Angew Chem Int Ed 25:323

    Google Scholar 

  48. Ito K, Nakamura H, Ise N (1986) J Chem Phys 85:6136

    Google Scholar 

  49. Overbeek JThG (1987) J Chem Phys 87:4406

    Google Scholar 

  50. Okamoto S, Hachisu S (1973) J Colloid Interface Sci 43:30

    Google Scholar 

  51. Hachisu S, Kose A, Kobayashi Y, Takano K (1976) J Colloid Interface Sci 55:499

    Google Scholar 

  52. Furusawa K, Hachisu S (1966) J Chem Soc Jpn 87:118

    Google Scholar 

  53. Furusawa K, Hachisu S (1963) Sci Light 12:1, 157

    Google Scholar 

  54. Suda H, Imai N (1985) J Colloid Interface Sci 104:204

    Google Scholar 

  55. Geil PH (1963) Polymer Single Crystals. Interscience, New York

    Google Scholar 

  56. Ottewill RH, Rance D (1977) Croat Chem Acta 50:65

    Google Scholar 

  57. Rath FJ, Evanco MA, Fredericks RJ, Reimschuessel PC (1972) J Polym Sci A2 10:1337

    Google Scholar 

  58. Jennings BR, Oakley DM (1982) Appl Opt 21:1519

    Google Scholar 

  59. Oakley DM, Jennings BR, Waterman DR, Fairey RC (1982) J Phys E 15:1077

    Google Scholar 

  60. Jennings BR, Ridler PJ (1987) Proc R Soc London A 411:225

    Google Scholar 

  61. Barker JA, Henderson D (1967) J Chem Phys 47:4714

    Google Scholar 

  62. Haytor JB, Penfold J (1981) Mol Phys 42:109

    Google Scholar 

  63. Haytor JB (1983) Faraday Disc Chem Soc 76:7

    Google Scholar 

  64. Grimson MJ, Benmouna M (1986) Chem Phys Lett 132:55

    Google Scholar 

  65. Kaji K, Urakawa H, Kanaya T, Kitamaru R (1984) 17:1835

  66. Mitaku S, Ohtsuki T, Kishimoto A, Okano K (1980) Biophys Chem 11:411

    Google Scholar 

  67. Mitaku S, Ohtsuki T, Okano K (1980) Jpn J Appl Phys 19:439

    Google Scholar 

  68. Jorand M, Koch AJ, Rothen F (1986) 47:217

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okubo, T., Aotani, S. Microscopic observation of ordered colloids in sedimentation equilibrium and the importance of Debye-screening length. 8. Unsymmetrical ordering and inclusion of anisotropic particles. Colloid & Polymer Sci 266, 1049–1057 (1988). https://doi.org/10.1007/BF01428816

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01428816

Key words

Navigation