Skip to main content
Log in

Unconventional myosins at the crossroad of signal transduction and cytoskeleton remodeling

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

The cytoplasm of eukaryotic cells is a complex milieu and unraveling how its unique cytoarchitecture is achieved and maintained is a central theme in modern cell biology. The actin cytoskeleton is essential for the maintenance of cell shape and locomotion, and also provides tracks for active intracellular transport. Myosins, the actin-dependent motor proteins form a superfamily of at least 15 structural classes and have been identified in a wide variety of organisms, making the presence of actin and myosins a hallmark feature of eukaryotes. Direct connections of myosins to a variety of cellular tasks are now emerging, such as in cytokinesis, phagocytosis, endocytosis, polarized secretion and exocytosis, axonal transport. Recent studies reveal that myosins also play an essential role in many aspects of signal transduction and neurosensation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abu-Elneel K, Karchi M, Ravid S (1996)Dictyostelium myosin II is regulated during chemotaxis by a novel protein kinase C. J Biol Chem 271: 977–984

    PubMed  CAS  Google Scholar 

  • Adams RJ, Pollard TD (1989) Binding of myosin I to membrane lipids. Nature 340: 565–568

    PubMed  CAS  Google Scholar 

  • Anderson BL, Boldogh I, Evangelista M, Boone C. Greene LA, Pon LA (1998) Thesrc homology domain-3 (SH3) of a yeast type-I myosin, myo5p, binds to verprolin and is required for targeting to sites of actin polarization. J Cell Biol 141: 1357–1370

    PubMed  CAS  Google Scholar 

  • Avraham KB, Hasson T, Steel KP, Kingsley DM, Russell LB, Mooseker MS, Copeland NG, Jenkins NA (1995) The mouse Snell's waltzer deafness gene encodes an unconventional myosin required for structural integrity of inner ear hair cells. Nat Genet 11: 369–375

    PubMed  CAS  Google Scholar 

  • Bähler M (1996) Myosins on the move to signal transduction. Curr Opin Cell Biol 8: 18–22

    PubMed  Google Scholar 

  • Battelle BA, Andrews AW, Calman BG, Sellers JR, Greenberg RM, Smith WC (1998) A myosin-III from limulus eyes is a clock-regulated phosphoprotein. J Neurosci 18: 4548–4559

    PubMed  CAS  Google Scholar 

  • Bearer EL, De Giorgis JA, Medeiros NA, Reese TS (1996) Actin-based motility of isolated axoplasmic organelles Cell Motil Cytoskeleton 33: 106–114

    CAS  Google Scholar 

  • Bement WM, Mooseker MS (1995) TEDS rule: a molecular rationale for differential regulation of myosin by phosphorylation of the heavy chain head. Cell Motil Cytoskeleton 31: 87–92

    PubMed  CAS  Google Scholar 

  • Bobola N, Jansen RP, Shin TH, Nasmyth K (1996) Asymmetric accumulation of Ash1p in postanaphase nuclei depends on a myosin and restricts yeast mating-type switching to mother cells. Cell 84: 699–709

    PubMed  CAS  Google Scholar 

  • Bohrmann J (1997)Drosophila unconventional myosin-VI is involved in intracellular and intercellular transport during oogenesis. Cell Mol Life Sci 53: 652–662

    PubMed  CAS  Google Scholar 

  • Brzeska H, Korn ED (1996) Regulation of class I and class II myosins by heavy chain phosphorylation. J Biol Chem 271: 16983–16986

    PubMed  CAS  Google Scholar 

  • Chacko S, Jacob SS, Horiuchi KY (1994) Myosin I from mammalian smooth muscle is regulated by caldesmon-calmodulin. J Biol Chem 269: 15803–15807

    PubMed  CAS  Google Scholar 

  • Cope MJT, Whisstock J, Rayment I, Kendrick-Jones J (1996) Conservation within the myosin motor domain: implications for structure and function. Structure 4: 969–987

    PubMed  CAS  Google Scholar 

  • Dembinsky A, Rubin H, Ravid S (1996) Chemoattractant-mediated increases in cGMP induce changes inDictyostelium myosin II heavy chain-specific protein kinase C activities. J Cell Biol 134: 911–921

    PubMed  CAS  Google Scholar 

  • — — — (1997) Autophosphorylation ofDictyostelium myosin II heavy chain-specific protein kinase C is required for its activation and membrane dissociation. J Biol Chem 272: 828–834

    PubMed  Google Scholar 

  • Doberstein SK, Baines IC, Wlegans G, Korn ED, Pollard TD (1993) Inhibition of contractile vacuole function in vivo by antibodies against myosin-I. Nature 365: 841–843

    PubMed  CAS  Google Scholar 

  • Durbach A, Collins K, Matsudaira P, Louvard D, Coudrier E (1996) Brush border myosin-I truncated in the motor domain impairs the distribution and the function of endocytic compartments in an hepatoma cell line. Proc Natl Acad Sci USA 93: 7053–7058

    Google Scholar 

  • Egelhoff TT, Lee RJ, Spudich JA (1993)Dictyostelium myosin heavy chain phosphorylation sites regulate myosin filament assembly and localization in vivo. Cell 75: 363–371

    PubMed  CAS  Google Scholar 

  • —, Naismith TV, Brozovich FV (1996) Myosin-based cortical tension inDictyostelium resolved into heavy and light chain-regulated components. J Muscle Res Cell Motil 17: 269–274

    PubMed  CAS  Google Scholar 

  • el-Amraoui A, Sahly I, Picaud S, Sahel J, Abitbol M, Petit C (1996) Human Usher 1B/mouse shaker-1: the retinal phenotype discrepancy explained by the presence/absence of myosin VIIA in the photoreceptor cells. Hum Mol Genet 5: 1171–1178

    PubMed  CAS  Google Scholar 

  • Evans LL, Lee AJ, Bridgman PC, Mooseker MS (1998) Vesicle-associated brain myosin-V can be activated to catalyze actin-based transport. J Cell Sci 111: 2055–2066

    PubMed  CAS  Google Scholar 

  • Fukui Y, Lynch TJ, Brzeska H, Korn ED (1989) Myosin I is located at the leading edges of locomotingDictyostelium amoebae. Nature 341: 328–331

    PubMed  CAS  Google Scholar 

  • Futey LM, Medley QG, Côtó GP, Egelhoff TT (1995) Structural analysis of myosin heavy chain kinase A fromDictyostelium: evidence for a highly divergent protein kinase domain, an amino-terminal coiled-coil domain, and a domain homologous to the beta-subunit of heterotrimeric G proteins. J Biol Chem 270: 523–529

    PubMed  CAS  Google Scholar 

  • Geli MI, Riezman H (1996) Role of type I myosins in receptor-mediated endocytosis in yeast. Science 272: 533–535

    PubMed  CAS  Google Scholar 

  • —, Wesp A, Riezman H (1998) Distinct functions of calmodulin are required for the uptake step of receptor-mediated endocytosis in yeast: the type-I myosin myo5p is one of the calmodulin targets. EMBO J 17: 635–647

    PubMed  CAS  Google Scholar 

  • Gibson F, Walsh J, Mburu P, Varela A, Brown KA, Antonio M, Beisel KW, Steel KP, Brown SD (1995) A type VII myosin encoded by the mouse deafness gene shaker-1. Nature 374: 62–64

    PubMed  CAS  Google Scholar 

  • Gillespie PG, Corey DP (1997) Myosin and adaptation by hair-cells. Neuron 19: 955–958

    PubMed  CAS  Google Scholar 

  • Govindan B, Bowser R, Novick P (1995) The role of Myo2, a yeast class V myosin, in vesicular transport. J Cell Biol 128: 1055–1068

    PubMed  CAS  Google Scholar 

  • Hacker U, Albrecht R, Maniak M (1997) Fluid-phase uptake by macropinocytosis inDictyostelium. J Cell Sci 110: 105–112

    PubMed  CAS  Google Scholar 

  • Hasson T, Heintzelman MB, Santos-Sacchi J, Corey DP, Mooseker MS (1995) Expression in cochlea and retina of myosin VIIa, the gene product defective in Usher syndrome type 1B. Proc Natl Acad Sci USA 92: 9815–9819

    PubMed  CAS  Google Scholar 

  • —, Gillespie PG, Garcia JA, MacDonald RB, Zhao Y-D, Yee AG, Mooseker MS, Corey DP (1997) Unconventional myosins in inner-ear sensory epithelia. J Cell Biol 137: 1287–1307

    PubMed  CAS  Google Scholar 

  • Heintzelman MB, Hasson T, Mooseker MS (1994) Multiple unconventional myosin domains of the intestinal brush border cytoskeleton. J Cell Sci 107: 3535–3543

    PubMed  CAS  Google Scholar 

  • Hicks JL, Miller KG (1996) The role of 95F myosin in theDrosophila nervous system. Mol Biol Cell 7: 38a

    Google Scholar 

  • —, Liu X, Williams DS (1996) Role of the ninaC proteins in photoreceptor cell structure: ultrastructure of ninaC deletion mutants and binding to actin filaments. Cell Motil Cytoskeleton 35: 367–379

    PubMed  CAS  Google Scholar 

  • Hill KL, Catlett NL, Weisman LS (1996) Actin and myosin function in directed vacuole movement during cell division inSaccharomyces cerevisiae. J Cell Biol 135: 1535–1549

    PubMed  CAS  Google Scholar 

  • Howard J (1997) Molecular motors: structural adaptations to cellular functions. Nature 389: 561–567

    PubMed  CAS  Google Scholar 

  • Huang JD, Mermall V, Strobel MC, Russell LB, Mooseker MS, Copeland NG, Jenkins NA (1998) Molecular-genetic dissection of mouse unconventional myosin-Va: tail region mutations. Genetics 148: 1963–1972

    PubMed  CAS  Google Scholar 

  • Jansen RP, Dowzer C, Michaelis C, Galova M, Nasmyth K (1996) Mother cell-specific HO expression in budding yeast depends on the unconventional myosin myo4p and other cytoplasmic proteins. Cell 84: 687–697

    PubMed  CAS  Google Scholar 

  • Janson LW, Ragsdale K, Luby-Phelps K (1996) Mechanism and size cutoff for steric exclusion from actin-rich cytoplasmic domains. Biophys J 71: 1228–1234

    Article  PubMed  CAS  Google Scholar 

  • Jay PY, Pasternak C, Elson EL (1993) Studies of mechanical aspects of amoeboid locomotion. Blood Cells 19: 375–386

    PubMed  CAS  Google Scholar 

  • —, Pham PA, Wong SA, Elson EL (1995) A mechanical function of myosin II in cell motility. Cell Sci 108: 387–393

    CAS  Google Scholar 

  • Johnston GC, Prendergast JA, Singer RA (1991) TheSaccharomyces cerevisiae MYO2 gene encodes an essential myosin for vectorial transport of vesicles. J Cell Biol 113: 539–551

    PubMed  CAS  Google Scholar 

  • Jung G, Hammer JA III (1994) The actin binding site in the tail domain ofDictyostelium myosin IC (myoc) resides within the glycine- and proline-rich sequence (tail homology region 2). FEBS Lett 342: 197–202

    PubMed  CAS  Google Scholar 

  • —, Fukui Y, Martin B, Hammer JA III (1993) Sequence, expression pattern, intracellular localization, and targeted disruption of theDictyostelium myosin ID heavy chain isoform. J Biol Chem 268: 14981–14990

    PubMed  CAS  Google Scholar 

  • Jung G, Wu XF, Hammer JA III (1996)Dictyostelium mutants lacking multiple classic myosin I isoforms reveal combinations of shared and distinct functions. J Cell Biol 133: 305–323

    PubMed  CAS  Google Scholar 

  • Kolman MF, Egelhoff TT (1997)Dictyostelium myosin heavy chain kinase A subdomains: coiled-coil and WD repeat roles in oligomerization and substrate targeting. J Biol Chem 272: 16904–16910

    PubMed  CAS  Google Scholar 

  • —, Futey LM, Egelhoff TT (1996)Dictyostelium myosin heavy chain kinase A regulates myosin localization during growth and development. J Cell Biol 132: 101–109

    PubMed  CAS  Google Scholar 

  • Kuwayama H, Ecke M, Gerisch G, Van Haastert PJ (1996) Protection against osmotic stress by cGMP-mediated myosin phosphorylation. Science 271: 207–209

    PubMed  CAS  Google Scholar 

  • Langford GM, Kuznetsov SA, Johnson D, Cohen DL, Weiss DG (1994) Movement of axoplasmic organelles on actin filaments assembled on acrosomal processes: evidence for a barbed-end-directed organelle motor. J Cell Sci 107: 2291–2298

    PubMed  Google Scholar 

  • Lee SF, Côté GP (1995) Purification and characterization of aDictyostelium protein kinase required for actin activation of the Mg2+ ATPase activity ofDictyostelium myosin ID. J Biol Chem 270: 11776–11782

    PubMed  CAS  Google Scholar 

  • —, Egelhoff TT, Mahasneh A, Côté GP (1996) Cloning and characterization of aDictyostelium myosin I heavy chain kinase activated by Cdc42 and Rac. J Biol Chem 271: 27044–27048

    PubMed  CAS  Google Scholar 

  • Levy G, Levi-Acobas F, Blanchard S, Gerber S, Larget-Piet D, Chenal V, Liu XZ, Newton V, Steel KP, Brown SD, Munnich A, Kaplan J, Petit C, Weil D (1997) Myosin VIIA gene: heterogeneity of the mutations responsible for Usher syndrome type IB. Hum Mol Genet 6: 111–116

    PubMed  CAS  Google Scholar 

  • Liu XZ, Walsh J, Tamagawa Y, Kitamura K, Nishizawa M, Steel KP, Brown SDM (1997) Autosomal-dominant non-syndromic deafness caused by a mutation in the myosin VIIa gene. Nat Genet 17: 268–269

    PubMed  CAS  Google Scholar 

  • —, Ondek B, Williams DS (1998a) Mutant myosin VIIa causes defective melanosome distribution in the rpe of shaker-1 mice. Nat Genet 19: 117–118

    PubMed  Google Scholar 

  • —, Hope C, Walsh J, Newton V, Ke XM, Liang CY, Xu LR, Zhou JM, Trump D, Steel KP, Bundey S, Brown SDM (1998b) Mutations in the myosin VIIa gene cause a wide phenotypic spectrum, including atypical usher-syndrome. Am J Hum Genet 63: 909–912

    PubMed  CAS  Google Scholar 

  • Luby-Phelps K (1994) Physical properties of cytoplasm. Curr Opin Cell Biol 6: 3–9

    PubMed  CAS  Google Scholar 

  • McGoldrick CA, Gruver C, May GS (1995) MyoA ofAspergillus nidulans encodes an essential myosin I required for secretion and polarized growth. J Cell Biol 128: 577–587

    PubMed  CAS  Google Scholar 

  • Mercer JA, Seperack PK, Strobel MC, Copeland NG, Jenkins NA (1991) Novel myosin heavy chain encoded by murine dilute coat colour locus. Nature 349: 709–713

    PubMed  CAS  Google Scholar 

  • Mermall V, McNally JG, Miller KG (1994) Transport of cytoplasmic particles catalysed by an unconventional myosin in livingDrosophila embryos. Nature 369: 560–562

    PubMed  CAS  Google Scholar 

  • —, Post PL, Mooseker MS (1998) Unconventional myosins in cell-movement, membrane traffic, and signal-transduction. Science 279: 527–533

    PubMed  CAS  Google Scholar 

  • Mitchison TJ, Cramer LP (1996) Actin-based cell motility and cell locomotion. Cell 84: 371–379

    PubMed  CAS  Google Scholar 

  • Miyata H, Bowers B, Korn ED (1989) Plasma membrane association ofAcanthamoeba myosin I. J Cell Biol 109: 1519–1528

    PubMed  CAS  Google Scholar 

  • Morita YS, Jung G, Hammer JA III, Fukui Y (1996) Localization ofDictyostelium myoB and myoD to filopodia and cell-cell contact sites using isoform-specific antibodies. Eur J Cell Biol 71: 371–379

    PubMed  CAS  Google Scholar 

  • Müller RT, Honnert U, Reinhard J, Bähler M (1997) The rat myosin myr 5 is a GTPase-activating protein for rho in vivo: essential role of arginine 1695. Mol Biol Cell 8: 2039–2053

    PubMed  Google Scholar 

  • Müsch A, Cohen D, Rodriguez-Boulan E (1997) Myosin II is involved in the production of constitutive transport vesicles from the TGN. J Cell Biol 138: 291–306

    PubMed  Google Scholar 

  • Nascimento AAC, Cheney RE, Tauhata SBF, Larson RE, Mooseker MS (1996) Enzymatic characterization and functional domain mapping of brain myosin-V. J Biol Chem 271: 17561–17569

    PubMed  CAS  Google Scholar 

  • Neujahr R, Albrecht R, Kohler J, Matzner M, Schwartz JM, Westphal M, Gerisch G (1998) Microtubule-mediated centrosome motility and the positioning of cleavage furrows in multinucleate myosin-II null-cells. J Cell Sci 111: 1227–1240

    PubMed  CAS  Google Scholar 

  • —, Heizer C, Gerisch G (1997) Myosin II-independent processes in mitotic cells ofDictyostelium discoideum: redistribution of the nuclei, rearrangement of the actin system and formation of the cleavage furrow. J Cell Sci 110: 123–137

    PubMed  CAS  Google Scholar 

  • Ng KP, Kambara T, Matsuura M, Burke M, Ikebe M (1996) Identification of myosin III as a protein kinase. Biochemistry 35: 9392–9399

    PubMed  CAS  Google Scholar 

  • Novak KD, Titus MA (1998) The myosin-I SH3 domain and TEDS rule phosphorylation site are required for in vivo function. Mol Biol Cell 9: 75–88

    PubMed  CAS  Google Scholar 

  • —, Peterson MD, Reedy MC, Titus MA (1995)Dictyostelium myosin I double mutants exhibit conditional defects in pinocytosis. J Cell Biol 131: 1205–1221

    PubMed  CAS  Google Scholar 

  • Porter JA, Montell C (1993) Distinct roles of theDrosophila ninaC kinase and myosin domains revealed by systematic mutagenesis. J Cell Biol 122: 601–612

    PubMed  CAS  Google Scholar 

  • —, Hicks JL, Williams DS, Montell C (1992) Differential localizations for the twoDrosophila ninaC kinase/myosins in photoreceptor cells. J Cell Biol 116: 683–693

    PubMed  CAS  Google Scholar 

  • —, Yu M, Doberstein SK, Pollard TD, Montell C (1993) Dependence of calmodulin localization in the retina on the NINAC unconventional myosin. Science 262: 1038–1042

    PubMed  CAS  Google Scholar 

  • —, Minke B, Montell C (1995) Calmodulin binding toDrosophila NinaC required for termination of phototransduction. EMBO J 14: 4450–4459

    PubMed  CAS  Google Scholar 

  • Prekeris R, Terrian DM (1997) Brain myosin V is a synaptic vesicle-associated motor protein: evidence for a Ca2+-dependent interaction with the synaptobrevin-synaptophysin complex. J Cell Biol 137: 1589–1601

    PubMed  CAS  Google Scholar 

  • Probst FJ, Fridell RA, Raphael Y, Saunders TL, Wang AH, Liang Y, Morell RJ, Touchman JW, Lyons RH, Nobentrauth K, Friedman TB, Camper SA (1998) Correction of deafness in shaker-2 mice by an unconventional myosin in a BAC transgene. Science 280: 1444–1447

    PubMed  CAS  Google Scholar 

  • Reinhard J, Scheel AA, Diekmann D, Hall A, Ruppert C, Bähler M (1995) A novel type of myosin implicated in signalling by rho family GTPases. EMBO J 14: 697–704

    PubMed  CAS  Google Scholar 

  • Rodionov VI, Hope AJ, Svitkina TM, Borisy GG (1998) Functional coordination of microtubule-based and actin-based motility in melanophores. Curr Biol 8: 165–168

    PubMed  CAS  Google Scholar 

  • Rogers SL, Gelfand VI (1998) Myosin cooperates with microtubule motors during organelle transport in melanophores. Curr Biol 8: 161–164

    PubMed  CAS  Google Scholar 

  • Rosenfeld SS, Rener B (1994) The GPQ-rich segment ofDictyostelium myosin IB contains an actin binding site. Biochemistry 33: 2322–2328

    PubMed  CAS  Google Scholar 

  • Satterwhite LL, Pollard TD (1992) Cytokinesis. Curr Opin Cell Biol 4: 43–52

    PubMed  CAS  Google Scholar 

  • Schwarz EC, Geissler H, Soldati T (1999) A potentially exhaustive screening strategy reveals two novel divergent myosins inDictyostelium. Cell Biochem Biophys 30: 413–435

    PubMed  CAS  Google Scholar 

  • Sellers JR, Goodson HV (1995) Motor proteins 2: myosin. Protein Profile 2: 1323–1423

    PubMed  CAS  Google Scholar 

  • Sobe T, Taggart RT, Vasquez DA, Ahituv N, Avraham KB (1997) Myosin-VI (myo6): a candidate gene for non-syndromic sensorineural deafness. Am J Hum Genet 61: 2299–2299

    Google Scholar 

  • Solc CF, Derfler RH, Duyk GM, Corey DR (1994) Molecular cloning of myosins from the bullfrog saccular macula: a candidate for the hair cell adaptation motor. Aud Neurosci 1: 63–75

    CAS  Google Scholar 

  • Soldati T, Geissler H, Schwarz EC (1999) How many is enough? Exploring the myosin repertoire in the model eukaryoteDictyostelium discoideum. Cell Biochem Biophys 30: 389–411

    PubMed  CAS  Google Scholar 

  • Stevens RC, Davis TN (1998) Mlc1p is a light chain for the unconventional myosin Myo2p inSaccharomyces cerevisiae. J Cell Biol 142: 711–722

    PubMed  CAS  Google Scholar 

  • Stöffler HE, Bähler M (1998) The ATPase activity of myr3, a rat myosin-I, is allosterically inhibited by its own tail domain and by Ca2+ binding to its light-chain calmodulin. J Biol Chem 273: 14605–14611

    PubMed  Google Scholar 

  • —, Ruppert C, Reinhard J, Bähler M (1995) A novel mammalian myosin I from rat with an SH3 domain localizes to Con A-inducible, F-actin-rich structures at cell-cell contacts. J Cell Biol 129: 819–830

    PubMed  Google Scholar 

  • — Hönnert U, Bauer CA, Hofer D, Schwarz H, Müller RT, Drenckhahn D, Bähler M (1998) Targeting of the myosin-I myr3 to intercellular adherens type junctions induced by dominant active Cdc42 in HeLa cells. J Cell Sci 111: 2779–2788

    PubMed  Google Scholar 

  • Takagishi Y, Oda S-I, Hayasaka S, Dekker-Ohno K, Shikata T, Inouye M, Yamamura H (1996) Thedilute-lethal (d l) gene attacks a Ca2+ store in the dendritic spine of Purkinje cells in mice. Neurosci Lett 215: 169–172

    PubMed  CAS  Google Scholar 

  • Temesvari LA, Bush JM, Peterson MD, Novak KD, Titus MA, Cardelli JA (1996) Examination of the endosomal and lysosomal pathways inDictyostelium discoideum myosin I mutants. J Cell Sci 109: 663–673

    PubMed  CAS  Google Scholar 

  • Titus MA (1997) An unconventional myosin required for phagocytosis. Mol Biol Cell 8: 352a

    Google Scholar 

  • Uyeda TQP, Titus MA (1997) The myosins ofDictyostelium. In: Maeda Y, Inouye K, Takeuchi I (eds) Dictyostelium: a model system for cell and developmental biology. Universal Academy Press, Tokyo, pp 43–64

    Google Scholar 

  • —, Abramson PD, Spudich JA (1996) The neck region of the myosin motor domain acts as a lever arm to generate movement. Proc Natl Acad Sci USA 93: 4459–4464

    PubMed  CAS  Google Scholar 

  • Wang AH, Liang Y, Fridell RA, Probst FJ, Wilcox ER, Touchman JW, Morton CC, Morell RJ, Nobentrauth K, Camper SA, Friedman TB (1998) Association of unconventional myosin myo15 mutations with human nonsyndromic deafness DFNB3. Science 280: 1447–1451

    PubMed  CAS  Google Scholar 

  • Wang Z-Y, Sakai J, Matsudaira PT, Baines IC, Sellers JR, Hammer JAI III, Korn ED (1997) The amino acid sequence of the light chain ofAcanthamoeba myosin IC. J Muscle Res Cell Motil 18: 395–398

    PubMed  CAS  Google Scholar 

  • Wei Q, Wu XF, Hammer JA III (1997) The predominant defect in dilute melanocytes is in melanosome distribution and not cell-shape, supporting a role for myosin-v in melanosome transport. J Muscle Res Cell Motil 18: 517–527

    PubMed  CAS  Google Scholar 

  • Weil D, Blanchard S, Kaplan J, Guilford P, Gibson F, Walsh J, Mburu P, Varela A, Levilliers J, Weston MD, Kelley PM, Kimberling WJ, Wagenaar M, Levi-Acobas F, Larget-Piet D, Munnich A, Steel KP. Brown SDM, Petit C (1995) Defective myosin VIIA gene responsible for Usher syndrome type 1B. Nature 374: 60–61

    PubMed  CAS  Google Scholar 

  • —, Levy G, Sahly I, Levi-Acobas F, Blanchard S, El-Amraoui A, Crozet F, Philippe H, Abitbol M, Petit C (1996) Human myosin VIIA responsible for the Usher 1B syndrome: a predicted membrane-associated motor protein expressed in developing sensory epithelia. Proc Natl Acad Sci USA 93: 3232–3237

    PubMed  CAS  Google Scholar 

  • Weiss A, Leinwand LA (1996) The mammalian myosin heavy chain gene family. Annu Rev Cell Dev Biol 12: 417–439

    PubMed  CAS  Google Scholar 

  • Weston MD, Kelley PM, Overbeck LD, Wagenaar M, Orten DJ, Hasson T, Chen ZY, Corey D, Mooseker M, Sumegi J, Cremers C, Moller C, Jacobson SG, Gorin MB, Kimberling WJ (1996) Myosin VIIA mutation screening in 189 Usher syndrome type 1 patients. Am J Hum Genet 59: 1074–1083

    PubMed  CAS  Google Scholar 

  • Wirth JA, Jensen KA, Post PL, Bement WM, Mooseker MS (1996) Human myosin-IXb, an unconventional myosin with a chimerinlike rho/rac GTPase-activating protein domain in its tail. J Cell Sci 109: 653–661

    PubMed  CAS  Google Scholar 

  • Wolenski JS (1995) Regulation of calmodulin-binding myosins. Trends Cell Biol 5: 310–316

    PubMed  CAS  Google Scholar 

  • Wu C, Lee SF, Furmaniak-Kazmierczak E, Côté GP, Thomas DY, Leberer E (1996) Activation of myosin-I by members of the Ste20p protein kinase family. J Biol Chem 271: 31787–31790

    PubMed  CAS  Google Scholar 

  • Wu XF, Kocher B, Wei Q, Hammer III JA (1998) Myosin Va associates with microtubule-rich domains in both interphase and dividing cells. Cell Motil Cytoskeleton 40: 286–303

    PubMed  CAS  Google Scholar 

  • Xu P, Mitchelhill KI, Kobe B, Kemp BE, Zot HG (1997) The myosin I-binding protein Acan 125 binds the SH3 domain and belongs to the superfamily of leucine-rich repeat proteins. Proc Natl Acad Sci USA 94: 3685–3690

    PubMed  CAS  Google Scholar 

  • Yumura S, Uyeda TQP (1997a) Myosin II can be localized to the cleavage furrow and to the posterior region ofDictyostelium amoebae without control by phosphorylation of myosin heavy and light chains. Cell Motil Cytoskeleton 36: 313–322

    PubMed  CAS  Google Scholar 

  • — — (1997b) Transport of myosin II to the equatorial region without its own motor activity in mitoticDictyostelium cells. Mol Biol Cell 8: 2089–2099

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soldati, T., Schwarz, E.C. & Geissler, H. Unconventional myosins at the crossroad of signal transduction and cytoskeleton remodeling. Protoplasma 209, 28–37 (1999). https://doi.org/10.1007/BF01415698

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01415698

Keywords

Navigation