Skip to main content
Log in

f-Konvergenz undf-Stetigkeit von Operatorenfolgen auf metrischen Räumen

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

Equicontinuity of the operators of a given sequence of nonlinear operators is one of the necessary and sufficient conditions for continuous convergence of this sequence. This lemma, which is due to Rinow, gives a generalization of the Banach-Steinhaus-theorem. Hence it led to some generalizations of the Lax-Richt-myer-theory of difference approximations for initial value problems. The equicontinuity in this case correspondends to numerical stability. But often continuous convergence is a too strong demand in the theory of nonlinear numerical problems (for instance in the case of difference schemes for quasilinear partial differential equations), whereas a restriction to only pointwise convergence possibly leads to numerical instability. Therefore in this paper a set of definitions of convergence is considered lying between pointwise and continuous convergence. Sorts of continuity are described which are as characteristic for these kinds of convergence as equicontinuity for continuous convergence. As an numerical application we study the connection between the solution-depending stability and the sensitiveness to perturbations of difference schemes for quasilinear initial value problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. du Bois-Reymond, P.: Sitz.-Ber. Preuß. Akad. Wiss. Berlin (1886), 359–360.

  2. Courant, R.: Über eine Eigenschaft der Abbildungsfunktionen bei konformer Abbildung. Gött. Nachr. (1914), 101–109.

  3. Schaefer, H.: Stetige Konvergenz in allgemeinen topologischen Räumen. Arch. Math.6, 423–427 (1955).

    Google Scholar 

  4. Rinow, W.: Die innere Geometrie der metrischen Räume. Berlin-Göttingen-Heidelberg: Springer 1961.

    Google Scholar 

  5. Kantorowitsch, L. W., Akilow, G. P.: Funktionalanalysis in normierten Räumen. Berlin: Akademie-Verlag 1964.

    Google Scholar 

  6. Ansorge, R., Haß, R.: Konvergenz von Differenzenverfahren für lineare und nichtlineare Anfangswertaufgaben. Berlin-Heidelberg-New York: Springer 1970.

    Google Scholar 

  7. Dahlquist, G.: Convergence and stability in the numerical integration of ordinary differential equations. Math. Scand.4, 33–53 (1956).

    Google Scholar 

  8. Kelley, I. L.: General topology. Princeton-Toronto-London-New York: D. van Nostrand Comp. 1955.

    Google Scholar 

  9. Poppe, H.: Stetige Konvergenz und der Satz von Ascoli und Arzelà. Math. Nachr.30, 87–122 (1965).

    Google Scholar 

  10. Courant, R., Isaacson, E., Rees, M.: On the solution of nonlinear hyperbolic differential equations by finite differences. Comm. Pure Appl. Math.5, 243–255 (1952).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ansorge, R. f-Konvergenz undf-Stetigkeit von Operatorenfolgen auf metrischen Räumen. Numer. Math. 20, 280–287 (1972). https://doi.org/10.1007/BF01407370

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01407370

Navigation