Skip to main content
Log in

Convergence of Finite Difference Schemes to the Aleksandrov Solution of the Monge-Ampère Equation

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

We present a technique for proving convergence to the Aleksandrov solution of the Monge-Ampère equation of a stable and consistent finite difference scheme. We also require a notion of discrete convexity with a stability property and a local equicontinuity property for bounded sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ash, R.B.: Measure, Integration, and Functional Analysis. Academic Press, New York–London (1972)

    MATH  Google Scholar 

  2. Awanou, G.: Convergence of a hybrid scheme for the elliptic Monge-Ampère equation. http://homepages.math.uic.edu/~awanou/up.html

  3. Awanou, G.: On standard finite difference discretizations of the elliptic Monge-Ampère equation. arXiv:1311.2812 (2014)

  4. Awanou, G.: Discrete Aleksandrov solutions of the Monge-Ampère equation. arXiv:1408.1729 (2015)

  5. Awanou, G.: Smooth approximations of the Aleksandrov solution of the Monge-Ampère equation. Commun. Math. Sci. 13(2), 427–441 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Awanou, G., Matamba Messi, L.: A variational method for computing numerical solutions of the Monge-Ampère equation. arXiv:1510.00453 (2015)

  7. Barles, G.: Solutions de Viscosité des Équations de Hamilton-Jacobi. Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 17. Springer, Paris (1994)

    MATH  Google Scholar 

  8. Benamou, J.D., Froese, B.D.: A viscosity framework for computing Pogorelov solutions of the Monge-Ampère equation. arXiv:1407.1300v2 (2014)

  9. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton (1992)

    MATH  Google Scholar 

  10. Faragó, I., Karátson, J.: Numerical Solution of Nonlinear Elliptic Problems via Preconditioning Operators: Theory and Applications. Advances in Computation: Theory and Practice, vol. 11. Nova Science Publishers, Hauppauge (2002)

    MATH  Google Scholar 

  11. Froese, B., Oberman, A.: Convergent finite difference solvers for viscosity solutions of the elliptic Monge-Ampère equation in dimensions two and higher. SIAM J. Numer. Anal. 49(4), 1692–1714 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Glowinski, R.: Numerical methods for fully nonlinear elliptic equations. In: ICIAM 07—6th International Congress on Industrial and Applied Mathematics, pp. 155–192. Eur. Math. Soc., Zürich (2009)

    Google Scholar 

  13. Gutiérrez, C.E.: The Monge-Ampère Equation. Progress in Nonlinear Differential Equations and their Applications, vol. 44. Birkhäuser, Boston (2001)

    Book  MATH  Google Scholar 

  14. Hackbusch, W.: Elliptic Differential Equations. Theory and Numerical Treatment. Springer Series in Computational Mathematics, vol. 18. Springer, Berlin (2010). English edn., translated from the 1986 corrected German edition by Regine Fadiman and Patrick D.F. Ion

    MATH  Google Scholar 

  15. Hartenstine, D.: The Dirichlet problem for the Monge-Ampère equation in convex (but not strictly convex) domains. Electron. J. Differ. Equ. 2006, 138 (2006), 9 pp. (electronic)

    MathSciNet  MATH  Google Scholar 

  16. Oberman, A.M.: Convergent difference schemes for degenerate elliptic and parabolic equations: Hamilton-Jacobi equations and free boundary problems. SIAM J. Numer. Anal. 44(2), 879–895 (2006) (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  17. Oberman, A.M.: Finite difference methods for the infinity Laplace and \(p\)-Laplace equations. J. Comput. Appl. Math. 254, 65–80 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Pogorelov, A.V.: Monge-Ampère Equations of Elliptic Type. Noordhoff, Groningen (1964). Translated from the first Russian edition by Leo F. Boron with the assistance of, Rabenstein, Albert L. and Bollinger, Richard C.

    MATH  Google Scholar 

  19. Pogorelov, A.V.: Extrinsic Geometry of Convex Surfaces. Scientific Translations, Translations of Mathematical Monographs, vol. 35. AMS, Providence (1973). Translated from the Russian by Israel Program for

    MATH  Google Scholar 

  20. Rauch, J., Taylor, B.A.: The Dirichlet problem for the multidimensional Monge-Ampère equation. Rocky Mt. J. Math. 7(2), 345–364 (1977)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the referees for a careful reading of the paper. Gerard Awanou was partially supported by a Division of Mathematical Sciences of the US National Science Foundation grant No. 1319640.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerard Awanou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awanou, G., Awi, R. Convergence of Finite Difference Schemes to the Aleksandrov Solution of the Monge-Ampère Equation. Acta Appl Math 144, 87–98 (2016). https://doi.org/10.1007/s10440-016-0041-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-016-0041-x

Keywords

Mathematics Subject Classification (2000)

Navigation