Skip to main content
Log in

Features of thermal fatigue failure for die steels 3Kh2V8F and 4Kh5MFS under injection mold operating conditions

  • Technical Information
  • Published:
Metal Science and Heat Treatment Aims and scope

Abstract

Extensive use of die casting is limited by the short operating life of molds with cyclically changing temperature and stresses. As a result of this action there is thermal fatigue failure of the operating surface layer of a mold. This article considers features of the thermal fatigue failure mechanism for steels 3Kh2V8F and 4Kh5MFS used for mold manufacture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. S. Gorelik, L. K. Rastorguev, and Yu. A. Skakov, X-Ray and Electron Optical Analysis [in Russian], Metallurgiya, Moscow (1970).

    Google Scholar 

  2. L. S. Kremnev and A. Ya. Zabezhinksii, “Development and selection of heat-resistant tool steels for water-cooled dies,” Metalloved. Term. Obrab. Met., No. 2, 25–29 (1980).

    Google Scholar 

  3. Yu. A. Geller, Tool Steels [in Russian], Mashinostroenie, Moscow (1983).

    Google Scholar 

  4. A. Hudremont, Special Steels, Vol. 11 [Russian translation], Metallurgiya, Moscow (1966).

    Google Scholar 

  5. M. I. Gol'dshtein, S. V. Grachev, and Yu. G. Veksler, Special Steels [in Russian], Metallurgiya, Moscow (1985).

    Google Scholar 

  6. P. L. Gruzin and V. V. Mural', “Mechanism of the effect of molybdenum on reversible temper brittleness of steel,” Metalloved. Term. Obrab. Met., No. 3, 70–74 (1969).

    Google Scholar 

  7. B. F. Trakhtenberg and M. A. Shubina, “Structure of white layers formed with cyclic temperature an force effects,” Metalloved. Term. Obrab. Met., No. 3, 56–57 (1969).

    Google Scholar 

  8. R. R. Faskhutdinov, B. N. Zhuravlev, and O. I. Nikolaeva, “Use of corrosion-resistant steels for molds,” Metalloved. Term. Obrab. Met., No. 4, 2–8 (1986).

    Google Scholar 

  9. L. Z. Rumshiskii, Mathematical Treatment of experimental Results: Reference Manual [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  10. D. Broek, Bases of Fracture Mechanics [Russian translation], Vysshaya Shkola, Moscow (1980).

    Google Scholar 

  11. T. Ekobori, Physics and Fracture Mechanics and the Strength of Solids [Russian translation], Metallurgiya, Moscow (1971).

    Google Scholar 

  12. S. Taira and R. Otani, Theory of High-Temperature Strength of Metals [Russian translation], Metallurgiya, Moscow (1986).

    Google Scholar 

  13. I. I. Goryunov, Molds for Die Casting: Reference Manual [in Russian], Mashinostroenie, Leningrad (1973).

    Google Scholar 

  14. L. F. Kratovich and G. D. Tkachevskaya, “Structural factors in the fracture toughness of die steels,” Metalloved. Term. Obrab. Met., No. 7, 23–26 (1988).

    Google Scholar 

Download references

Authors

Additional information

Rybinsk Aviation Technology Institute. Translated from Metailovedenie i Termicheskaya Obrabotka Metallov, No. 4, pp. 34–37, April, 1994.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhukov, A.A., Postnova, A.D. & Ryabov, Y.V. Features of thermal fatigue failure for die steels 3Kh2V8F and 4Kh5MFS under injection mold operating conditions. Met Sci Heat Treat 36, 224–229 (1994). https://doi.org/10.1007/BF01400807

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01400807

Keywords

Navigation