Skip to main content
Log in

Effects of Test Temperature on Low Cycle Fatigue Behaviors in Large Mold Steel

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

A mold steel for plastic injection was subjected to low cycle fatigue (LCF) tests at temperatures of 25, 200, and 250 °C. LCF tests were carried out at a total strain amplitude (Δεt/2) from 0.004 to 0.012 under a constant strain rate of 0.01 s–1. Transmission electron microscope images showed that cyclic loading accelerated dislocation recovery as the LCF test temperature increased. The LCF life increased as a result of improvement in the ductility associated with dislocation recovery as the test temperature increased. The LCF behavior at the test temperature range followed the Coffin–Manson equation. Empirical equation was proposed to predict the LCF life of the mold steel within the test temperature range.

Graphic Abstract

Empirical equation was proposed to predict the LCF life of the mold steel considering the total strain amplitude and test temperature, and the calculated LCF life was in good agreement well with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Kim, J. Jung, E. Baek, Y. Choi, K. Euh, Met. Mater. Int. 25, 353–363 (2019)

    Article  CAS  Google Scholar 

  2. I. Khoubrou, B. Nami, S.M. Miresmaeili, Met. Mater. Int. 26, 196–204 (2020)

    Article  CAS  Google Scholar 

  3. T. Mayer, L. Balogh, C. Solenthaler, E. Müller-Gubler, S.R. Holdsworth, Acta Mater. 60, 2485–2496 (2012)

    Article  CAS  Google Scholar 

  4. P. Marmy, T. Kruml, J. Nucl. Mater. 377, 52–58 (2008)

    Article  CAS  Google Scholar 

  5. M. Sauzay, H. Brillet, I. Monnet, M. Mottot, F. Barcelo, B. Fournier, A. Pineau, Mater. Sci. Eng. A 400–401, 241–244 (2005)

    Article  Google Scholar 

  6. M.N. Batista, S. Hereñú, I. Alvarez-Armas, Procedia Eng. 74, 228–231 (2014)

    Article  CAS  Google Scholar 

  7. D. Kim, S. Kim, Int. J. Fatigue 36, 24–29 (2012)

    Article  CAS  Google Scholar 

  8. S. Hong, S. Lee, T. Byun, Mater. Sci. Eng. A 457, 139–147 (2007)

    Article  Google Scholar 

  9. C.D. Lee, S.J. Yoo, Met. Mater. Int. 20, 601–612 (2014)

    Article  CAS  Google Scholar 

  10. D. Firrao, P. Matteis, P.R. Spena, R. Gerosa, Mater. Sci. Eng. A 559, 371–383 (2013)

    Article  CAS  Google Scholar 

  11. D. Firrao, R. Matteis, G. Scavino, G. Ubertalli, M.G. Ienco, M.R. Pinasco, E. Stagno, R. Gerosa, B. Rivolta, A. Silvestri, G. Silva, A. Ghidini, Mater. Sci. Eng. A 468–470, 193–200 (2007)

    Article  Google Scholar 

  12. L.F. Coffin Jr., ASME Trans. 76, 931 (1954)

    CAS  Google Scholar 

  13. Y. Luo, C. Huang, R. Tian, Q. Wang, J. Iron Steel Inst. 20, 50–56 (2013)

    Article  CAS  Google Scholar 

  14. Q. Zhou, L. Qian, J. Meng, L. Zhao, F. Zhang, Mater. Des. 85, 487–496 (2015)

    Article  CAS  Google Scholar 

  15. J. Shin, Y. Kim, J. Lee, Met. Mater. Int. 24, 1412–1421 (2018)

    Article  CAS  Google Scholar 

  16. P. Guo, L. Qian, J. Meng, F. Zhang, L. Li, Mater. Sci. Eng. A 584, 133–142 (2013)

    Article  CAS  Google Scholar 

  17. S. Hong, S. Lee, Int. J. Fatigue 26, 899–910 (2004)

    Article  CAS  Google Scholar 

  18. C. Kanchanomai, Y. Mutoh, Mater. Sci. Eng. A 381, 113–120 (2004)

    Article  Google Scholar 

  19. N. Costa, F.S. Silva, Int. J. Fatigue 33, 624–631 (2011)

    Article  Google Scholar 

  20. S.R. Holdsworth, A.K.F. Maschek, L. Binda, E. Mazza, Procedia Eng. 2, 379–386 (2010)

    Article  CAS  Google Scholar 

  21. C. Laird, Z. Wang, T. Ma, H.F. Chai, Mater. Sci. Eng. A 113, 245–257 (1989)

    Article  Google Scholar 

Download references

Acknowledgements

This paper was financially supported by Engineering Research Center (ERC) program (2011-0030058) funded by the Ministry of Education, Science and Technology (MEST, Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jehyun Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, JH., Lee, J. Effects of Test Temperature on Low Cycle Fatigue Behaviors in Large Mold Steel. Met. Mater. Int. 27, 2292–2299 (2021). https://doi.org/10.1007/s12540-020-00760-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00760-3

Keywords

Navigation