Advertisement

Numerische Mathematik

, Volume 52, Issue 3, pp 317–327 | Cite as

On Gauss quadrature formulas with equal weights

  • Franz Peherstorfer
Article

Summary

It is well known that the Chebyshev weight function (1−x2)−1/2 is the only weight function (up to a linear transformation) for which then point Gauss quadrature formula has equal weights for alln∈ℕ. In this paper we describe all weight functions for which thenm point Gauss quadrature formula has equal weights for alln∈ℕ, wherem∈ℕ is fixed.

Subject Classifications

AMS(MOS): 65D32 G: 1.4 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brass, H.: Quadraturverfahren. Göttingen: Vanderhoeck und Ruprecht 1977Google Scholar
  2. 2.
    Gautschi, W.: Advances in Chebyshev quadrature. Lect. Notes Math.506, 100–121 (1976)Google Scholar
  3. 3.
    Gautschi, W.: On some polynomials of interest in theoretical chemistry. BIT24, 473–483 (1984)Google Scholar
  4. 4.
    Hildebrand, F.: Introduction to numerical analysis. New York: Mc Graw-Hill 1974Google Scholar
  5. 5.
    Levinson, N.: Simplified treatment of integrals of Cauchy type, the Hilbert Problem and singular integral equations. SIAM Rev.7, 474–502 (1965)Google Scholar
  6. 6.
    Peherstorfer, F.: On Tchebycheff polynomials on disjoint intervals. Colloq. Math. Soc. BOLYAI, 49. HAAR Mem. Conf, Budapest 1985, pp. 737–751Google Scholar
  7. 7.
    Peherstorfer, F.: Weight functions which admit Tchebycheff quadrature. Bull. Austral. Math. Soc.26, 29–37 (1982)Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Franz Peherstorfer
    • 1
  1. 1.Institut für MathematikJ. Kepler Universität LinzLinzAustria

Personalised recommendations