Skip to main content
Log in

A study on gelation of soybean globulin solutions

2. Viscoelastic properties and structure of thermotropic gels of soybean globulins

  • Original Contributions
  • Colloid Science
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Summary

A study has been undertaken on the linear viscoelastic properties (stress relaxation) of thermotropic gels of soybean globulins (SBG) over a wide range of concentration and temperature. Experimental data on isothermal stress relaxation for SBG gels of various concentrations were generalized in the form of a concentration-invariant relaxation curve using the reduction by modulus, but without the reduction by time. The concentration dependence of the modulus reduction parameter was shown to be similar to that of the equilibrium gel modulus with an accuracy of up to a constant factor. The temperature-invariant relaxation curve of 17.5% gel was obtained in the traditional way in the range of reduced time equal to about seven decimal orders. Its form is characteristic of ordinary cross-linked high elastic polymers at the end of the transition zone and the beginning of plateau zone. The activation energy for relaxation of SBG gels amounts to 136 kJ/mol irrespective of their concentration. Based on assaying of sol-fraction content and its composition, it has been found that 7 and 11 S SBG fractions play a predominant part in gelation. SBG gel are soluble in 8 M urea, but insoluble in 0.01 M mercaptoethanol. Under the action of urea the gels and native SBG are decomposed into practically identical molecular fragments (subunits). These facts attest that the hydrophobic interaction of subunits play a leading role in SBG gelation. Gelation is not accompanied by changes in the integral intensity of a comparatively well resolved leucine band in PMR (proton magnetic resonance) spectrum of SBG at 100 MHz. This fact serves as a basis for assumption that the packing densities of polypeptide chains in the structural elements of gels and native molecules of SBG are comparable. The relaxation properties of gels at the end of the transition zone and the beginning of the plateau zone are determined predominantly by the “internal viscosity” of their elastic structural elements. It should be noted in this connection that the role of the “local viscosity” as an effective criterium for hydrodynamic interaction of these elements is apparently small due to their limited flexibility. The elastic elements of gels are long-term fluctuations of protein concentration. In the event of gel with 17.5% concentration one elastic element consists of approximately 20 subunits. In their thermo-rheological behaviour SBG gels can be classed with the systems having entropic elasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wolf, W. J., J. C. Cowan, Soybeans as a Food Source, pp. 34–77, Butterworths, (1971).

  2. Gutcho, M., in: Textured Food and Allied Products, pp. 82–119, 150–161, N. D. Co. (London, 1973).

    Google Scholar 

  3. Wolf, W. J., J. Agr. Food Chem.18, 969–976 (1970).

    Google Scholar 

  4. Circle, S. J., E. W. Meyer, R. W. Whitney Cereal Chem.41, 157–172 (1964).

    Google Scholar 

  5. Hermanson, A. M., Lebensm.+Wiss.+Technol.5, 24–29 (1972).

    Google Scholar 

  6. Castimpoolas, N., E. W. Meyer Cereal Chem.47, 559–570 (1970).

    Google Scholar 

  7. Bikbov, T. M., V. Ya. Grinberg, V. B. Tolstoguzov, Die Nahrung23, 487–494 (1979).

    PubMed  Google Scholar 

  8. Wolf, W. J., in: Soy Beans: Chemistry and Technology, Vol. 1 Proteins, A. K. Smith, S. J. Circle, Eds. pp. 93–143, Avi Publishing Co. Inc. (Westport, 1972).

    Google Scholar 

  9. Bikbov, T. M., V. Ya. Grinberg, V. B. Tolstoguzov. Die Nahrung23, 403–408 (1979).

    Google Scholar 

  10. Lee, E. H., J. R. M. Radoka, J. Appl. Mech.27, 438–444 (1960).

    Google Scholar 

  11. Finer, E. G., F. Franks, M. C. Phillips, A. Suggett, Biopolymers14, 1995–2005 (1975).

    Google Scholar 

  12. Arakava, K., K. Atsumi, Nippon Kagaku Zassi80, 133–135 (1959).

    Google Scholar 

  13. Arakava, K., Bull. Chem. Soc. Japan34, 1233–1235 (1961).

    Google Scholar 

  14. Arakava, K., Bull. Chem. Soc. Japan35, 309–312 (1962).

    Google Scholar 

  15. Thirion, P., R. Chasset, Chim. Ind.97, 617–625 (Paris, 1967).

    Google Scholar 

  16. Ferry, J. D., in: Viscoelastic Properties of Polymer, pp. 437–441, Willey (New York, 1970).

    Google Scholar 

  17. Ferry, J. D., in: Viscoelastic Properties of Polymers, p. 267, Inlit. (Moscow, 1963).

    Google Scholar 

  18. Ferry, J. D., E. R. Fitzgerald J. Colloid Sci.8, 224–242 (1953).

    Google Scholar 

  19. Finer, E. G., J. Magn. Res.13, 76–86 (1974).

    Google Scholar 

  20. Williams, M. C., AJChE J.21, 1–25 (1975).

    Google Scholar 

  21. Wolf, W. J., D. A. Sly, Cereal Chem.44, 653–668 (1967).

    Google Scholar 

  22. Tanford, C., Adv. Prot. Chem.23, 182–187 (1968).

    Google Scholar 

  23. Koshiyama, I., Agr. Biol. Chem.34, 1815–1820 (1970); Vaintraub, 1. A., Mol. Biol. (USSR)1, 807–814 (1967).

    Google Scholar 

  24. Hashizume, K., N. Nakamura, T. Watanabe, Agr. Biol. Chem.39, 1339–1347 (1975).

    Google Scholar 

  25. Ferry, J. D., in: Viscoelastic Properties of Polymers, pp. 518–569, Willey (New York, 1970).

    Google Scholar 

  26. Gerrings, J. D., P. L. Jobling, E. Won-Jones, J. C. S. FaradayII74, 1246–1252 (1978).

    Google Scholar 

  27. Ferry, J. D., in: Viscoelastic Properties of Polymers, pp. 233–236, Willey (New York, 1970).

    Google Scholar 

  28. Leharne, S. A., P. H. Morgan, G. S. Park, Europhys. Conference Abstracts3C, 211–212 (1979).

    Google Scholar 

  29. Hirai, N., Bull. Ins. Chem. Res. Kyoto Univ.33, 21–37 (1955).

    Google Scholar 

  30. Hermans, Jr., J., J. Polym. Sci.A3, 1859–1868 (1963).

    Google Scholar 

  31. Dušek, K., W. Prins, Adv. Polym. Sci.6, 1–102 (1969).

    Google Scholar 

  32. Volkenshtein, M. V., Yu. A. Gotlib, Visokomolek, Soed.1, 1063–1069 (1959).

    Google Scholar 

  33. Wolf, W. J., T. Tamura, Cereal Chem.46, 331–344 (1969).

    Google Scholar 

  34. Hashizume, K., T. Watanabe, Agr. Biol. Chem.43, 683–690 (1979).

    Google Scholar 

  35. Vinogradov, G. V., A. Ya. Malkin, in: Rheology of Polymers, pp. 129–131, Chimia (Moscow, 1977).

    Google Scholar 

  36. Tombs, M. P., in: Proteins as Human Food, pp. 126–138, R. A. Lowrie, Ed., Butterworths (London, 1970).

    Google Scholar 

  37. Tombs, M. P., Disc. Faraday Soc.57, 158–164 (1974).

    Google Scholar 

  38. Zimm, B. H., J. Chem. Phys.14, 164–179 (1946).

    Google Scholar 

  39. Komori, T., K. Makishima Text. Res. J.47, 13–17 (1977).

    Google Scholar 

  40. Tombs, M. P., Disc. Faraday Soc.57, 201 (1974).

    Google Scholar 

  41. Gordon, M., Disc. Faraday Soc.57, 201 (1974).

    Google Scholar 

  42. Bikbov, T. M., V. Ya. Grinberg, A. Danilenko, V. B. Tolstoguzov, to be published (1980).

  43. Simha, R., L. A. Utracki, Rheol. Acta12, 455–464 (1973).

    Google Scholar 

  44. Burchard, W., Makromol. Chem.50, 20–36 (1961).

    Google Scholar 

  45. Stockmeyer, W. H., M. Fixman, J. Polym. Sci.Cl, 137–141 (1963).

    Google Scholar 

  46. Tanford, C., Adv. Prot. Chem.23, 160 (1968).

    Google Scholar 

  47. Scheraga, H. A., in: The Proteins, v. 1, Chapt. 6 II, H. Neurath, Ed., Academic (New York, 1963).

    Google Scholar 

  48. Flory, P. J., in: Principles of Polymer Chemistry, Chapt. 9, Cornell. Univ. (Ithaca, 1953).

    Google Scholar 

  49. Nash, A. M., W. J. Wolf, Cereal Chem.44, 183–192 (1967).

    Google Scholar 

  50. Briggs, D. R., W. J. Wolf, Arch. Biochem. Biophys.72, 127–144 (1957); V. S. Shvarts, I. A. Vaintraub, Biochemistry (USSR)32, 135–140 (1967); I. Koshiyma, Cereal Chem.45, 394–404 (1968); M. Draper, N. Castimpoolas, Cereal Chem.55, 16–23 (1978).

    PubMed  Google Scholar 

  51. Itzhaki, R. F., D. M. Gill, Analyt. Biochem.2, 401–410 (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 6 figures and 1 table

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bikbov, T.M., Grinberg, V.Y., Schmandke, H. et al. A study on gelation of soybean globulin solutions. Colloid & Polymer Sci 259, 536–547 (1981). https://doi.org/10.1007/BF01397891

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01397891

Key words

Navigation