Skip to main content
Log in

Effect of grain size on the crack resistance of aluminum alloys

  • Nonferrous metals and alloys
  • Published:
Metal Science and Heat Treatment Aims and scope

Abstract

Crack resistance is an important characteristic of the structural strength of materials. The reliability criteria for articles depend upon it, i.e., ‘safe damage’ and ‘safe life.’ The first criterion is governed by the capacity of a material to provide article operation in the presence of cracks, and the second is governed by the time to generation of the first crack. Thus in order to evaluate crack resistance it is necessary to determine material resistance to crack generation and development. In this work resistance to crack generation and development is evaluated for wrought medium-strength aluminum alloys AMg6, AK4-1, and high-strength alloy V96ts which has a matrix (pseudo-single-phase) structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Honeycomb, Plastic Deformation of Metals [Russian translation], Mir, Moscow (1972).

    Google Scholar 

  2. A. M. Vasserman, V. A. Danilkin, O. S. Korobov, et al., Methods for Monitoring and Studying Light Alloys [in Russian], Metallurgiya, Moscow (1985).

    Google Scholar 

  3. G. T. Hahn and A. R. Rosenfeld, “Metallurgical factors affecting fracture toughness of aluminum alloys,” Met. Trans.,6A, No. 4, 653–658 (1975).

    Google Scholar 

  4. V. F. Ivanova and V. F. Terent'ev, Nature of Metal Fatigue [in Russian], Metallurgiya, Moscow (1975).

    Google Scholar 

  5. V. V. Tereshov, Yu. K. Shtovba, V. I. Smolentsev, and O. M. Sirotkina, “Effect of grain size on the fracture toughness and fatigue strength of alloy AK4-1,” Metalloved. Term. Obrab. Met., No. 7, 29–34 (1983).

  6. R. M. Pello, “Effect of grain size on fatigue,” in: Superfine Grains in Metals [Russian translation], Metallurgiya, Moscow (1973), pp. 220–231.

    Google Scholar 

  7. J. C. Williams and E. A. Starke, “The role of thermomechanical processing in tailoring the properties of aluminum and titanium alloys,” in: Deformation, Processing, and Structure, ASM Mat. Sci. Sem., St. Louis, Missouri (1984), pp. 279–356.

    Google Scholar 

  8. R. E. Sanders and E. A. Starke, “The effect of intermediate thermomechanical treatment on the fatigue properties of Al alloys,” Met. Trans, 9A, 1087–1100 (1978).

    Google Scholar 

  9. E. A. Starke and G. Lutjering, “Fatigue and microstructure,” in: Proc. ASM Sern. Oct. '78, St. Louis, Missouri, Metal Park, Ohio (1978), pp. 205–217.

  10. A. Lasalmonie and J. L. Strudel, “Influence of grain size on the mechanical behavior of some high-strength materials,” J. Mater. Sci.,21, 1837–1852 (1986).

    Google Scholar 

  11. R. A. Dul'nev and P. I. Kotov, Thermal Fatigue of Metals [in Russian], Mashinostroenie, Moscow (1980).

    Google Scholar 

  12. G. Lutjering and A. Gysler, “Microstruktur and Ermandung bei titan und aluminium legierungen,” Ermund. Ver. Met. Werkst. Obversely, 39–71 (1985).

  13. V. G. Kudryashov and V. I. Smolentsev, Fracture Toughness of Aluminum Alloys [in Russian], Metallurgiya, Moscow (1976).

    Google Scholar 

  14. S. J. Harris, B. Noble, and K. Dinsdale, “Fatigue crack propagation in Al-Li-Mg-Cr-Zr (8090) alloys,” in: Aluminum Technology '86, Proc. Int. Conf., London (1986), pp. 451–458.

  15. J. Lindigkeit, G. Terlinde, A. Gysler, and G. Lutering, “The effect of grain size on fatigue crack propagation behavior of age-hardened alloys in inert and corrosive environments,” Acta Met.,27, 1717–1726 (1985).

    Google Scholar 

  16. O. G. Senatorova, N. A. Ryazanova, N. A. Kopnov, et al., “Grain structure and properties of sheets of alloy V95,” in: Physical Metallurgy of Light Alloys [in Russian], VILS, Moscow (1985), pp. 93–98.

    Google Scholar 

  17. S. I. Kishkina, Failure Resistance of Aluminum Alloys [in Russian], Metallurgiya, Moscow (1989).

    Google Scholar 

  18. A. K. Zurek, M. R. James, and W. L. Morris, “The effect of grain size on fatigue growth of short cracks,” Met. Trans.,14A, No. 8, 1697–1705 (1983).

    Google Scholar 

  19. T. A. Razumova. O. P. Stasyuk, and A. M. Ponomarenko. “General problems of developing production technology for light and special alloys,” Tekhnologiya Legkikh Splavov, No. 1, 70–74 (1989).

  20. R. S. Veccio and R. W. Hertsberg, “Effect of microstructure on mechanical properties of Astroloy,” Eng. Fract. Mech.,22, 1049–1054 (1985).

    Google Scholar 

  21. J. E. King, “Effect of grain size and microstructure on threshold values and near-threshold crack growth in powder-formed Ni-base superalloy,” Met. Sci.,16, 345–355 (1982).

    Google Scholar 

  22. S. G. Glazunov and B. A. Kalachev (eds.), Titanium Alloys. Metallography of Titanium Alloys: Handbook [in Russian], Metallurgiya, Moscow (1980).

    Google Scholar 

  23. A. Gysler and G. Lutjering. “Effect of microstructure on fracture,” in: Titanium: Sci. and Techn. Proc. 5th Int. Conf., Vol. 3, Oberursel (1985), pp. 2001–2008.

  24. R. O. Ritchie, “Influence of microstructure on near-threshold fatigue-crack propagation in ultra-high strength steel,” Met. Sci.,11, 368–387 (1977).

    Google Scholar 

  25. O. N. Romaniv. “Structural approach to evaluation of fatigue crack kinetics,” in: Fatigue Methods, Proc. Int. Conf., Brno (1988), pp. 237–245.

  26. J. M. Kendall and J. F. Knott, “The influence of microstructure and temperature on near-threshold crack growth and in a vacuum,” in: Proc. Int. Conf. on Fatigue and Fatigue Threshold, Vol. 1, Birmingham (1984), pp 43–55.

  27. M. Kh. Rabinovich and M. V. Markushev, “Physical nature of the effect of grain size on the structural strength of aluminum alloys,” in: Metal Science and Technology of Light Alloys: Handbook [in Russian], VILS, Moscow (1990).

    Google Scholar 

  28. M. Srinivas and G. Melakondiah, “Effect of grain size on threshold stress intensity for fatigue crack Growth in armco iron,” Scr. Met., 689–692 (1986).

  29. O. N. Romaniv, Fracture Toughness of Structural Steels [in Russian], Metallurgiya, Moscow (1979).

    Google Scholar 

  30. V. S. Zolotarevskii, Mechanical Properties of Metals [in Russian], Metallurgiya, Moscow (1983).

    Google Scholar 

Download references

Authors

Additional information

Institute of Metal Superplasticity Problems, Russian Academy of Sciences. Aviation Institute, Ufim. Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 8, pp. 25–30, August, 1994.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rabinovich, M.K., Markuskev, M.V. Effect of grain size on the crack resistance of aluminum alloys. Met Sci Heat Treat 36, 429–436 (1994). https://doi.org/10.1007/BF01395228

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01395228

Keywords

Navigation