Skip to main content
Log in

Choice of a composition for a high-refractory concrete using calculations of the reduction reaction of the components

  • Scientific Research
  • Published:
Refractories Aims and scope

Conclusions

The calculation of the thermodynamic parameters showed that in the case of a finely dispersed binding part of the concretes working in conditions where alternating oxidizing and reducing gas media are in operation, the most promising materials are binders based on corundum and high-alumina cement. These data are in good agreement with the results of experimental studies of the carbon-resistance and erosion resistance of a series of refractories. It is also shown that the most effective filler of the concretes is corundum which has a high stability in relation to reducing media and a low vapor pressure a high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. N. V. Pitak, in: Formation of Refractories and Their Service [in Russian], Metallurgiya, Moscow (1984), pp. 42–46.

    Google Scholar 

  2. N. M. Buslovich and L. P. Mikhailov, Lining Materials for Electric Furnaces with a Controlled Atmosphere [in Russian], Énergiya, Moscow (1975).

    Google Scholar 

  3. P. P. Budnikov, New Ceramics [in Russian], Stroiizdat, Moscow (1969).

    Google Scholar 

  4. K. E. Wicks and F. E. Bloch, Thermodynamic Properties of 65 Elements, their Oxides, Halides, Carbides, and Nitrides [translation from English], Metallurgiya, Moscow (1965).

    Google Scholar 

  5. Ya. I. Gerasimov (ed.), Course in Physical Chemistry [in Russian], Vol. 1, 2nd ed., Khimiya, Moscow (1969).

    Google Scholar 

  6. A. A. Zhukovitskii and L. A. Shvartsman, Physical Chemistry [in Russian], 2nd Ed., Metallurgiya, Moscow (1968).

    Google Scholar 

  7. M. Kh. Karapet'yants and M. L. Karapet'yants, Fundamental Thermodynamic Constants of Inorganic and Organic Substances [in Russian], Khimiya, Moscow (1968).

    Google Scholar 

  8. M. Kh. Karapet'yants, Chemical Thermodynamics, 2nd Edition (with revisions and additions), State Scientific-Technical Publishing House of Chemical Literature, Moscow-Leningrad (1953), pp. 61–62.

    Google Scholar 

  9. V. P. Grushko (ed.), The Thermal Constants of Substances [in Russian], Izd. Akad. Nauk SSSR, Moscow, No. 5 (1971); No. 6 (1972); No. 7 (1974); No. 9, (1979).

    Google Scholar 

  10. H. H. Hueisen, J. Chem. Phys., No. 21, 1836–1839 (1953).

    Google Scholar 

  11. R. A. Robie, B. S. Hemingway, and J. R. Fisher, “Thermodynamic Properties of Minerals and Related Substances at 298.15°K and 1 Bar (105 Pa) Pressure and at Higher Temperatures, Government Geological Survey Bulletin, No. 1452, Washington (1978).

  12. I. S. Kainarskii, É. V. Degtyareva, and I. G. Orlova, Corundum Refractories and Ceramics [in Russian], Metallurgiya, Moscow (1981).

    Google Scholar 

  13. G. N. Kozhevnikov and A. G. Vodop'yanov, The Lower Oxides of Silicon and Aluminum in Electrometallurgy [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  14. S. Yamaguchi, Chem. Abstr.,45, 4111–4119 (1951).

    Google Scholar 

  15. N. E. Filonenko, I. V. Lavrov, O. V. Andreeva, and R. L. Pevzner, Dokl. Akad. Nauk SSSR,115, No. 3, 583–585 (1957).

    Google Scholar 

  16. Zh. L. Vert, M. V. Kamenev, and M. I. Sokhor, Dokl. Akad. Nauk SSSR,116, No. 5, 834–836 (1957).

    Google Scholar 

  17. M. Hoch and H. L. Jonston, J. Am. Chem. Soc.,76, No. 9, 2560–2564 (1954).

    Google Scholar 

  18. L. V. Gurvich, G. V. Karachevtsev, V. N. Kondrat'ev, et al., in: Bond Energies of the Chemical Bonds. Ionization Potential and Electron Affinity [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  19. R. R. Venner, Thermochemical Calculations [in Russian], Inizdat, Moscow (1950).

    Google Scholar 

  20. M. S. Kulikov, Thermal Dissociation of Compounds [in Russian], Metallurgiya, Moscow (1969).

    Google Scholar 

  21. S. I. Yakovlev, N. V. Bol'shakova, A. V. Bizina, et al. Ogneupory, No. 6, 15–18 (1984).

    Google Scholar 

  22. P. P. Budnikov and L. B. Khoroshavin, Refractory Concretes in Phosphate Binders [in Russian], Metallurgiya, Moscow (1971).

    Google Scholar 

  23. K. K. Strelov, Structure and Properties of Refractories [in Russian], 2nd Edition (revised), Metallurgiya, Moscow (1982).

    Google Scholar 

  24. A. S. Berezhnoi, Ogneupory, No. 1, 7–13 (1953).

    Google Scholar 

  25. D. H. Huble, Am. Ceram. Soc. Bull.,343, No. 7, 506–511 (1964).

    Google Scholar 

  26. T. Busby and M. Carter, Glass Technol.,9, No. 6, 154–157 (1968).

    Google Scholar 

  27. P. S. Mamykin, Dokl. Akad. Nauk SSSR,60, No. 2, 255 (1948).

    Google Scholar 

  28. N. V. Pitak, Z. D. Zhukova, and V. K. Bocharov, Theoretical and Technological Studies in the Field of Refractories; Collected Works of the Ukrainian Scientific-Research Institute of Refractories [in Russian], No. 10, Metallurgiya, Moscow (1967), pp. 39–42.

    Google Scholar 

  29. Z. D. Zhukova, N. V. Pitak, and V. G. Éntin, Ogneupory, No. 9, 26–32 (1965).

    Google Scholar 

  30. I. G. Orlova, N. L. P'yanykh, and I. S. Kainarskii, Ogneupory, No. 5, 36–44 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ogneupory, No. 12, pp. 9–16, December, 1986.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Usatikov, I.F., Gal'chenko, T.G., Degtyareva, É.V. et al. Choice of a composition for a high-refractory concrete using calculations of the reduction reaction of the components. Refractories 27, 672–680 (1986). https://doi.org/10.1007/BF01387227

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01387227

Keywords

Navigation