Skip to main content
Log in

New continuous Stern-Gerlach effect and a hint of “the” elementary particle

  • Published:
Zeitschrift für Physik D Atoms, Molecules and Clusters

Abstract

First a Stern-Gerlach type experiment on a beam of electrons similar to Brillouin's 1927 proposal is discussed and shown to be feasible contrary to claims in the literature. Then thecontinuous Stern-Gerlach effect for an individual electron in classical oscillatory motion along the axis of a Penning trap is introduced. The analogy is developed between the classic Stern-Gerlach effect and the continuous one, in which a magnetic bottle replaces the constant field gradient and the place of the glass plate collecting the silver atoms is taken by a meter measuring the frequency of the axial oscillation. Quantum jumps observed with this apparatus in 1977 are exhibited, demonstrating the requirement of a finite time for collapse of the wave function, and the work has been recognized as an early quantum-non-demolitionexperiment. A plot of measuredg-factors vs normalized radius for triton, proton, and electron suggests a new, 104× smaller value for the electron radius, when our electrong-value determined by magnetic resonance and the continuous Stern-Gerlach effect is used. The plot further suggests a progression of ever smaller and heavier fermions until “the” elementary particle, the “cosmon”, is reached. It was formed, when in a random quantum jump the metastable vacuum dissociated into a lone “cosmon/anticosmon” pair, whose subsequent rapid breakup initiated the Big Bang.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dehmelt, H.: Adv. At. Mol. Phys.3, 55 (1967);5, 109 (1969)

    Google Scholar 

  2. Dehmelt, H.: Phys. Scr. T22, 102 (1988)

    Google Scholar 

  3. Pauli, W.: Handbuch der Physik V/1. Flügge, S. (Hrsg.), mostly Sects. 9, 12, 23. Berlin, Göttingen, Heidelberg: Springer 1958. I have relied exclusively on the original german text

    Google Scholar 

  4. Van Dyck, Jr., R.S., Schwinberg, P.B., Dehmelt, H.G.: Phys. Rev. D34, 722 (1986)

    Google Scholar 

  5. Dehmelt, H.: Bulletin of magnetic resonance4, No. 1/2, 17 (1982)

    Google Scholar 

  6. Wheeler, A., Zurek, W. (ed.): Quantum theory and measurement, mostly pp. XVII, 699, 781, 784, 786. Princeton: Princeton University Press 1983

    Google Scholar 

  7. Kessler, J.: Polarized electrons, 2nd Edn., p. 5, Chap. 8. Berlin, Heidelberg, New York: Springer 1985

    Google Scholar 

  8. Sivers, D.: Phys. Rev. D2, 2048 (1970)

    Google Scholar 

  9. Pauli, W.: In: Le magnetism, 6ème Conseil de Physique Solvay, Bruxelles 1930, mostly pp. 183–186, 217–220 and 275–280. Paris: Gauthier-Villars 1932

    Google Scholar 

  10. Dehmelt, H., Ekstrom, P.: Bull. Am. Phys. Soc.18, 727 (1983)

    Google Scholar 

  11. Dehmelt, H.: Proc. Natl. Acad. Sci. USA83, 2291, 3074 (1986)

    Google Scholar 

  12. Van Dyck, Jr., R.S., Ekstrom, P., Dehmelt, H.: Nature262, 776 (1976)

    Google Scholar 

  13. Nagourney, W., Sandberg, J., Dehmelt, H.: Phys. Rev. Lett.56, 2797 (1986)

    Google Scholar 

  14. Van Dyck, Jr., R.S., Schwinberg, P.B., Dehmelt, H.G.: In: New frontiers in high energy physics. Kursunoglu, B., Perlmutter, A., Scott, L. (eds.). New York: Plenum 1978

    Google Scholar 

  15. Dehmelt, H.: Atomic masses and fundamental constants. Sanders, J.H., Wapstra, A.H. (eds.), p. 504. New York: Plenum 1976

    Google Scholar 

  16. Dehmelt, H., Ekstrom, P., Wineland, D., Van Dyck, R.: Bull. Am. Phys. Soc.19, 572 (1974)

    Google Scholar 

  17. Van Dyck, Jr., R.S., Schwinberg, P.B., Dehmelt, H.G.: Phys. Rev. Lett.38, 310 (1977)

    Google Scholar 

  18. Van Dyck, Jr., R.S., Schwinberg, P.B., Dehmelt, H.G.: In: Atomic physics 9. Van Dyck, R.S., Fortson, E.N. (eds.), p. 53. New York: World Scientific 1984

    Google Scholar 

  19. Braginsky, V., Vorontsov, Y.: Sov. Phys. Usp.17, 644 (1975)

    Google Scholar 

  20. Caves, C.M.: In: Quantum optics, experimental gravitation, and measurement theory. Meystre, P., Scully, M. (eds.), p. 594. New York: Plenum 1983

    Google Scholar 

  21. Pauli, W.: Naturwissenschaften19, 188 (1931)

    Google Scholar 

  22. Dirac, P.A.M.: The principles of quantum mechanics, Paragraph 69. Oxford: Oxford University Press 1958

    Google Scholar 

  23. Gardner, J.H., Purcell, E.M.: Phys. Rev.83, 996 (1951)

    Google Scholar 

  24. Dehmelt, H.: In: Advances in laser science II. Stwally, W.C., Lapp, M. (eds.), New York: AIP Conference Proceedings 1987

    Google Scholar 

  25. Chambers, E.E., Hofstadter, R.: Phys. Rev.103, 1454 (1956)

    Google Scholar 

  26. Simon, G.G., Schmitt, C., Borkowski, F., Walther, V.W.: Nucl. Phys. A333, 381 (1980)

    Google Scholar 

  27. Huang, K.: Am. J. Phys.20, 479 (1952)

    Google Scholar 

  28. Frisch, R., Stern, O.: Z. Phys.85, 4 (1933)

    Google Scholar 

  29. Rabi, I.I., Kellogg, J.M.B., Zacharias, J.R.: Phys. Rev.46, 157 (1934)

    Google Scholar 

  30. Brodsky, S.J., Drell, S.D.: Phys. Rev. D22, 2236 (1980)

    Google Scholar 

  31. Van Dyck, Jr., R.S., Schwinberg, P.B., Dehmelt, H.G.: Phys. Rev. Letters59, 26 (1987)

    Google Scholar 

  32. Kinoshita, T.: Proceedings of Symposium on the Hydrogen Atom, Pisa 1988

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dehmelt, H. New continuous Stern-Gerlach effect and a hint of “the” elementary particle. Z Phys D - Atoms, Molecules and Clusters 10, 127–134 (1988). https://doi.org/10.1007/BF01384846

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01384846

PACS

Navigation