Skip to main content
Log in

Genetic variation of microsatellite markers D1S117, D6S89, D11S35, APOC2, and D21S168 in the Spanish population

  • Original Articles
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Summary

We have used PCR amplification to analyse the allele frequency, distribution and heterozygosity of 5 microsatellite markers (D1S117, D6S89, D11S35, APOC2, and D21S168), in a sample of 100 unrelated Spanish individuals. The loci tested exhibit wide allelic variability having 7-17 alleles, PIC (polymorphic information content) between 0.79 and 0.86, and heterozygosity between 0.81 and 0.86. D1S117 and D21S168 have unimodal distribution, APOC2 has 4 common alleles which account for 71% of the total variation, D11S35 has a bimodal distribution and D6S89 is trimodal. The allelic distribution observed for each locus is in agreement with slippage and mispairing as the main mechanisms involved in the evolution of microsatellite alleles. Multiplex amplification of loci D6S89 and APOC2 was possible due to their non-overlapping allele sizes. The rapidity with which microsatellites can be analysed, and the accurate determination of alleles, make these markers very powerful tools for genetic typing. The information obtained for loci D1S117, D6S89, D11S35, APOC2, and D21S168, provides a basis for their use for DNA typing and paternity analysis in the Spanish population.

Zusammenfassung

Wir haben die PCR-Amplifikation angewandt, um die Allel-Häufigkeit, die Allel-Verteilung und die Heterozygotie bei 5 Mikrosatelliten-Markern (D1S117, D6S89, D11S25, APOC2 and D21S168) in einer Stichprobe von 100 unverwandten spanischen Personen zu untersuchen. Die untersuchten Loci zeigen eine breite Allel-Variabilität mit Häufigkeiten zwischen 7 und 17 Allelen, einem PIC (polymorpher Informationsgehalt) zwischen 0,79 und 0,86 und einer Heterozygotie-Rate zwischen 0,81 and 0,86. D1S117 und D21S168 haben eine unimodale Verteilung, APOC2 hat vier häufige Allele, welche 71% der gesamten Variation ausmachen, D11S35 hat eine bimodale Verteilung und D6S89 ist trimodal. Die Allel-Verteilung, wie sie für jeden Locus beobachtet wurde, stimmt mit der Annahme überein, daß „Slippage” und Fehlpaarung die Hauptmechanismen sind, welche in der Evolution der Mikrosatelliten-Allele involviert sind. Die Multiplex-Amplifikation der Loci D6S89 und APOC2 war möglich aufgrund ihrer nichtüberlappenden Allel-Größen. Die Geschwindigkeit, mit welcher die Mikrosatelliten analysiert werden können und die genaue Bestimmung der Allele machen diese Marker zu mächtigen Werkzeugen für genetische Typisierung. Die Informationen, welche für die Loci D1S117, D6S89, D11S35, APOC2 und D21S168 erhalten wird, schafft eine Basis für ihre Anwendung bei der DNA-Typisierung und bei der Vaterschaftsanalyse in der spanischen Bevölkerung.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balazs I, Baird M, Clyne M, Meade E (1989) Human population genetic studies of five hypervariable DNA loci. Am J Hum Genet 44:182–190

    PubMed  Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    PubMed  Google Scholar 

  • Budowle B, Giusti AM, Waye JS, Baechtel FS, Fourney RM, Adams DE, Presley LA, Deadman HA, Monson KL (1991) Fixed-bin analysis for statistical evaluation of continuous distributions of allelic data from VNTR loci, for use in forensic comparisons. Am J Hum Genet 48:841–855

    PubMed  Google Scholar 

  • Chamberlain JS, Gibbs RA, Ranier JE, Nguyen PN, Caskey CT (1988) Deletion screening of the Duchenne muscular dystrophy locus via multiplex DNA amplification. Nucleic Acids Res 16:11141–11156

    PubMed  Google Scholar 

  • Chakraborty R, Smouse PE, Neel JV (1988) Population amalgamation and genetic variation: observations on artificially agglomerated tribal populations of Central and South America. Am J Hum Genet 43:709–725

    PubMed  Google Scholar 

  • Devlin B, Risch N, Roeder K (1990) No excess of homozygosity at loci used for DNA fingerprinting. Science 249:1416–1420

    PubMed  Google Scholar 

  • Dryja TP, Mukai S, Peterson R, Rapaport JM, Walton D, Yandell DW (1989) Parental origin of mutations of the retinoblastoma gene. Nature 339:556–558

    PubMed  Google Scholar 

  • Economou EP, Bergen A, Warren AC, Antonarakis SE (1990) The poly(A) tract of Alu repetitive elements is polymorphic in the human genome. Proc Natl Acad Sci USA 87:2951–2954

    PubMed  Google Scholar 

  • Edwards A, Civitello A, Hammond HA, Caskey CT (1991) DNA typing and genetic mapping with trimeric and tetrameric tandem repeats. Am J Hum Genet 49:746–756

    PubMed  Google Scholar 

  • Edwards A, Hammond HA, Jin L, Caskey CT, Chakraborty R (1992) Genetic variation at five trimeric and tetrameric tandem repeat loci in four human population groups. Genomics 12:241–253

    PubMed  Google Scholar 

  • Fornage M, Chan L, Siest G, Boerwinkle E (1992) Allele frequency distribution of the (TG)n(AG)n microsatellite in the Apolipoprotein C-II gene. Genomics 12:63–68

    PubMed  Google Scholar 

  • Freund A-M, Michara M, Fuchs PP (1989) Z-DNA-forming sequences are spontaneous deletion hot spots. Proc Natl Acad Sci USA 86:7465–7469

    PubMed  Google Scholar 

  • Guo Z, Sharma V, Patterson D, Litt M (1990) Dinucleotide repeat polymorphism at the D21S168 locus. Nucleic Acids Res 18:5924

    Google Scholar 

  • Jeffreys AJ, Wilson V, Thein SL (1985) Hypervariable ‘minisatellite’ regions in human DNA. Nature 314:67–73

    PubMed  Google Scholar 

  • Jeffreys AJ, Wilson V, Newmann R, Keyte J (1988) Amplification of human minisatellites by polymerase chain reaction: towards DNA fingerprinting of single cells. Nucleic Acids Res 16:10953–10971

    PubMed  Google Scholar 

  • Jeffreys AJ, MacLeod A, Tamaki K, Neil DL, Monckton DG (1991) Minisatellite repeat coding as a digital approach to DNA typing. Nature 354:204–209

    PubMed  Google Scholar 

  • Levinson G, Gutman GA (1987) High frequencies of short frameshifts in poly-CA/TG tandem repeats borne by bacteriophage M13 in Escherichia coli K-12. Nucleic Acids Res 15:5223–5338

    Google Scholar 

  • Litt M, Luty JA (1989) A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am J Hum Genet 44:397–401

    PubMed  Google Scholar 

  • Litt M, Luty JA (1990) Dinucleotide repeat polymorphism at the D6S89 locus. Nucleic Acids Res 18:4301

    PubMed  Google Scholar 

  • Litt M, Sharma V, Luty JA (1990) Dinucleotide repeat polymorphism at the D11S35 locus. Nucleic Acids Res 18:5921

    Google Scholar 

  • Morral N, Estivill X (1992) Multiplex PCR amplification of three microsatellites within the CFTR gene. Genomics 13:1362–1364

    PubMed  Google Scholar 

  • Morral N, Nunes V, Casals T, Estivill X (1991) CA/GT Microsatellite alleles within the cystic fibrosis transmembrane conductance regulator (CFTR) gene are not generated by unequal crossingover. Genomics 10:692–698

    PubMed  Google Scholar 

  • Motulsky AG (1988) Normal and abnormal color-vision genes. Am J Hum Genet 42:405–407

    PubMed  Google Scholar 

  • Nakamura Y, Leppert M, O'Connell P, Wolff R, Holm T, Culver M, Martin C, Fujimoto E, Hoff M, Kumlin E, White R (1987) Variable number of tandem repeat (VNTR) markers for human gene mapping. Science 235:1616–1622

    PubMed  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    Google Scholar 

  • Saiki RK, Gelfand DH, Stoffel S, Sharf SJ, Higuchi R, Horn GT, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491

    PubMed  Google Scholar 

  • Sajantila A, Puomilahti S, Johnsson V, Ehnholm C (1992) Amplification of reproducible allele markers for amplified fragment length polymorphism analysis. BioTechniques 12:16–22

    PubMed  Google Scholar 

  • Sharma V, Litt M (1991) Dinucleotide repeat polymorphism at the D1S117 locus. Nucleic Acids Res 19:1168

    Google Scholar 

  • Smeets HJM, Burnner HG, Ropers HH, Wieringa B (1989) Use of variable simple sequence motifs as genetic markers: application to study of myotonic dystrophy. Hum Genet 83:245–251

    PubMed  Google Scholar 

  • Smith LM, Sanders JZ, Kaiser RJ, Hughes P, Dodd C, Connell CR, Heiner C, et al (1986) Fluorescence detection in automated DNA sequence analysis. Nature 321:674–679

    PubMed  Google Scholar 

  • Tautz D (1989) Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res 17: 6463–6471

    PubMed  Google Scholar 

  • Weber JL (1990a) Informativeness of human (dC-dA)n. (dG-dT)n polymorphisms. Genomics 7:524–530

    PubMed  Google Scholar 

  • Weber JL (1990b) Human DNA polymorphisms based on length variations in simple-sequence tandem repeats. Genetic and physical mapping, vol 1. Cold Spring Harbor Laboratory Press New York

    Google Scholar 

  • Weber JL, May PE (1989) Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Genet 44:388–396

    PubMed  Google Scholar 

  • Zoghbi HY, Jodice C, Sandkuijl LA, Kwiatkowski Jr. TJ, McCail AE, Huntoon SA, Lulli P, Spadaro M, Litt M, Cann HM, Frontali M, Terrenato L (1991) The gene for autosomal dominant Spinocerebellar Ataxia (SCAI) maps telomeric to the HLA complex and is closely linked to the D6S89 locus in three large kindreds. Am J Hum Genet 49:23–30

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuentes, JJ., Banchs, I., Volpini, V. et al. Genetic variation of microsatellite markers D1S117, D6S89, D11S35, APOC2, and D21S168 in the Spanish population. Int J Leg Med 105, 271–277 (1993). https://doi.org/10.1007/BF01370384

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01370384

Key words

Schlüsselwörter:

Navigation