Skip to main content
Log in

4 OPW calculations of electronic transport coefficients of aluminium containing point defects

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

The scattering of conduction electrons on dilute point defects in aluminium was investigated, for zero temperature, by pseudopotential calculations considering the realistic form of the Al Fermi surface (FS) and band structure. The 4-OPW wavefunctions, band velocities and FS curvatures were calculated for 1,300 pointsk on 1/48 (cubic symmetry element) of the FS. The scattering potentials were obtained as follows: for the impurities Ge, Mg, Zn, and Ga tabulated pseudopotentials were used and rescreened for the electron density of Al, the vacancy was treated as a missing Al atom and the [100] dumbbell interstitial as two Al atoms with a vacancy in between (always with strain field corrections). The scattering matrixP kk′ was obtained in first order Born approximation. The linearized Boltzmann equation was solved numerically by iteration, for zero magnetic field and for a reduced set of 109 points on 1/48 FS, to yield the anisotropic transport relaxation timesτ k and lifetimesτ 0 k .

Theτ k were interpolated for the 1,300 points again and inserted into low-field FS integrals for the galvanomagnetic coefficients which depend sensitively on the details of the FS and the anisotropy ofτ k . Without any free parameter, our results agree very well with experimental data for the case of Ge, Mg, and Zn impurities, and less so for the homovalent Ga impurities and for the self-defects. The diffusion thermopower was also calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Proc. Int. Conf. on Electron Lifetimes in Metals: Phys. cond. Matter19, No. 1–4 (1975)

  2. Animalu, A.O.E., Heine, V.: Phil. Mag.12, 1249 (1965)

    Google Scholar 

  3. Ashcroft, N.W.: Phil. Mag.8, 2055 (1963)

    Google Scholar 

  4. Anderson, J.R., Lane, S.S.: Phys. Rev. B2, 298 (1970)

    Google Scholar 

  5. Böning, K., Pfändner, K., Rosner, P., Schlüter, M.: J. Phys. F: Metal Phys.5, 1176 (1975)

    Google Scholar 

  6. Sorbello, R.S.: J. Phys. F: Metal Phys.4, 503 (1974)

    Google Scholar 

  7. Böning, K., Pfändner, K., Rosner, P., Lengeler, B., Welter, J.-M.: will be submitted to Z. Physik (companion paper)

  8. Fukai, Y.: Phys. Rev.186, 697 (1969)

    Google Scholar 

  9. Sorbello, R.S.: Solid State Commun.12, 287 (1973)

    Google Scholar 

  10. Taylor, P.L.: A Quantum Approach to the Solid State, 1st ed.; New Jersey: Prentice Hall 1970

    Google Scholar 

  11. Taylor, P.L.: Proc. R. Soc. A275, 200 (1963)

    Google Scholar 

  12. Tsuji, M.: J. Phys. Soc. Japan13, 979 (1958)

    Google Scholar 

  13. Böning, K.: Phys. kondens. Materie11, 177 (1970)

    Google Scholar 

  14. Wilson, A.H.: The Theory of Metals, Cambridge: Cambridge University Press 1953

    Google Scholar 

  15. Jan, J.P.: Can. J. Phys.46, 1371 (1968)

    Google Scholar 

  16. Böning, K.: Thermoelectricity in Metallic Conductors, Editors Blatt, F.J., and Schroeder, P.A.; pp. 333–358, Plenum Publ. Corp. 1978

  17. Davydov, A.S.: Quantum Mechanics, 1st ed., Oxford: Pergamon Press 1965

    Google Scholar 

  18. Harrison, W.A.: Pseudopotentials in the Theory of Metals. New York: Benjamin 1966

    Google Scholar 

  19. Sorbello, R.S.: J. Phys. F: Metal Phys.4, 1665 (1974)

    Google Scholar 

  20. Animalu, A.O.E.: Phil. Mag.11, 379 (1964)

    Google Scholar 

  21. Lindhardt, J.: Kgl. Danske Videnskab. Selskab. Mat.-Fys. Medd.28, 8 (1954)

    Google Scholar 

  22. Pfändner, K.: Ph. D. Thesis, Techn. Universität München (1977)

  23. Martin, R.S., Reinsch, C., Wilkinson, J.H.: Numerische Mathematik11, 181 (1968)

    Google Scholar 

  24. Wegehaupt, T., Doezema, R.E.: Phys. Rev. B16, 2515 (1977)

    Google Scholar 

  25. Leung, H.K., Kus, F.W., McKay, N., Carbotte, J.P.: Phys. Rev. B16, 4358 (1977)

    Google Scholar 

  26. Bross, H.: Phys. Lett.64A, 418 (1978)

    Google Scholar 

  27. Bronstein, I., Semendjajew, K.: Taschenbuch der Mathematik, 13. ed., Zürich, Frankfurt: Harri Deutsch 1973

    Google Scholar 

  28. Pearson, W.B.: A Handbook of Lattice Spacings and Structures of Metals and Alloys. New York: Pergamon Press 1958

    Google Scholar 

  29. Blatt, F.J., Fankhauser, H.R.: National Bureau Standards, Misc. Publ.287, 109 (1966)

    Google Scholar 

  30. Schilling, W.: J. Nucl. Materials69+70, 465 (1978)

    Google Scholar 

  31. Cohen, M.L., Heine, V.: Solid State Physics24, Editors Seitz, F., Turnbull, D., Ehrenreich, H., pp. 37–248. New York: Academic Press 1970

    Google Scholar 

  32. Appapillai, M., Williams, A.R.: J. Phys. F: Metal Phys.3, 759 (1973)

    Google Scholar 

  33. Haubold, H.-G.: private communication

  34. Ziman, J.M.: Principles of the Theory of Solids, 1st ed., Cambridge: University Press 1965

    Google Scholar 

  35. Pfändner, K., Böning, K., Brenig, W.: Solid State Commun.23, 31 (1977)

    Google Scholar 

  36. Fickett, F.R.: Cryogenics11, 349 (1971)

    Google Scholar 

  37. Sato, H., Babauchi, T., Yonemitsu, K.: appears in phys. stat. sol. (1978)

  38. Mauer, W.: Diplomarbeit, Technische Universität München, 1976

  39. Rosner, P., Sieber, G., Böning, K.: unpublished

  40. Sieber, G., Wehr, G., Böning, K.: J. Phys. F: Metal Phys.7, 2503 (1977)

    Google Scholar 

  41. Kesternich, W., Ullmaier, H., Schilling, W.: J. Phys. F: Metal Phys.6, 1867 (1976)

    Google Scholar 

  42. Papastaikoudis, C., Rocoffylou, E., Tselfes, W., Chountas, K.: Z. Physik B25, 131 (1976)

    Google Scholar 

  43. Yonemitsu, K., Takano, K., Matsuda, T.: submitted to phys. stat. sol.

  44. Ashcroft, N.W.: Phys. Lett.23, 48 (1966)

    Google Scholar 

  45. Kittel, C.: Einführung in die Festkörperphysik, 3rd ed., München: Oldenbourg 1973

    Google Scholar 

  46. Shaw, R.W. Jr.: Phys. Rev.174, 769 (1968)

    Google Scholar 

  47. Bèal-Monod, M.T., Kohn, W.: J. Phys. Chem. Solids19, 1877 (1968)

    Google Scholar 

  48. Nielsen, P.E., Taylor, P.L.: Phys. Rev. B10, 4061 (1974)

    Google Scholar 

  49. Wannier, G.H.: Phys. Rev. B5, 3836 (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Auszug aus der vom Fachbereich Physik der Techn. Universität München genehmigten Dissertation über „Berechnung von elektrischen Transporteigenschaften von Aluminium mit der Pseudopotentialmethode“ des Dipl.-Phys. Klaus Pfändner. Tag der Promotion: 29. 11. 1977

This work was supported by the German Bundesministerium für Forschung und Technologie

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfändner, K., Böning, K. & Brenig, W. 4 OPW calculations of electronic transport coefficients of aluminium containing point defects. Z Physik B 32, 287–300 (1979). https://doi.org/10.1007/BF01351506

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01351506

Keywords

Navigation